Stage 2 – calendar


Students can:

  • read a simple timetable
  • read a simple timeline
  • construct a timeline to show events in their life

Activities to support the strategy

Activity 1: simple timetables

1. Display a variety of timetables. Examples of timetables could include:

  • weekly class timetables
  • television guides listing the times for TV programs
  • examination timetables
  • transport timetables listing the arrival and departure times for trains, planes, buses, etc.

As a class compare these timetables and identify how they are similar and different.


  • What is one timetable that you use regularly?
  • Why do you use this timetable?
  • What could happen if you did not have this timetable?

2. Students are given a copy of a television guide from the daily newspaper and answer questions about how the timetable is constructed and what information can be provided.

For example, using this television guide showing afternoon programs, questions could include:

  • What TV program begins at 7:00?
  • What TV program begins at 4:30?
  • How long does the News go for?
  • If I began watching TV at 4 o'clock and turned it off after Patrick's Way, how long would I have been watching TV?
  • Can you convert the digital times to analog times?
  • What other information can you interpret from a timetable?

3. Students collect a variety of television guides from different sources, such as magazines and newspapers. They:

  • identify and discuss features that are common to the different television guides.
  • use the television guides to plan an evening of television viewing and record their plan in a table.


Television program Channel Start time Finish time
enter information enter information enter information enter information
  • Students share their television viewing plan with the class.

The information in their television viewing plan could be used to draw a timeline. Students could exchange timelines and describe what the other student would be watching that evening and when.

4. Use the television guide to practise converting from digital to analog time.

Example: 10:30 = half past ten, 10:00 = 10 o'clock

Change these digital times to analog times.

  1. 7:00 =
  2. 4:00 =
  3. 7:30 =
  4. 5:30 =

5. Write a variety of matching digital and analog times on a set of cards. Make your own or use digital and analog cards template (PDF 52.99KB)

In pairs, students jumble the cards and place them face down. Students take turns to turn two cards over. If the cards match, the student keeps them. The winner is the student with the most cards.

After playing the game, the students make additional cards for the game and include times recorded in other ways

Students then repeat the game with the additional cards.


  • Can you read the time on each card?
  • Can you record the time on each card in another way?
  • Can you explain the relationship between the time units?

The cards can also be presented as a worksheet and the students can practise changing between digital and analog time by drawing a line to match cards.

6. Students find one example of a timetable and paste it below. You could look:

  • on the internet for a train or bus timetable
  • in the newspaper for a TV guide
  • at a fair or fete or sporting carnival for the program of events.

Students tell the class what information is provided in their timetable. Students write a description which gives details.

Make a class chart of the timetables the students have collected, including their descriptions.

Activity 2: daily time

1. Display the table below. It shows the time for one day using one hour intervals.


  • How many hours are there in one day?
  • How many hours from midnight to midday?

A day starts at 12 o'clock at night (midnight) and finishes at 12 o'clock (midnight) 24 hours later.

Have students find 4 o'clock on the table above. Did they find two times for 4 o'clock?

Ask what activities they might be doing at:

  • 4 o'clock in the morning.
  • 4 o'clock in the afternoon.

Repeat for other pairs of times on the daily timeline.

2. Display this timeline which shows the daily activities for Jarryd, a school student.

In pairs, students read the timeline for his day, then answer the questions.


  • What does Jarryd do at 6 o'clock in the morning?
  • What does Jarryd do at 7 o'clock at night?
  • Is this a school day, a weekend or a holiday? How do you know?
  • What is one activity, which is not listed, that Jarryd could be doing between 7 o'clock and 8 o'clock in the morning?
  • There is a large blank space at the beginning and the end of this 24-hour timeline. What would Jarryd be most likely doing then?
  • If this was your 24-hour timeline what are some changes that you would need to make? It may be a change in a time or an activity.

Activity 3: my timeline

Students construct a simple timeline of their life, from birth until now.

Provide each student with this template for a timeline. They follow the steps below to fill in some of the important events in their life.

Write this year's number to the left of the top dot. Write in the missing years by counting backwards. Your timeline will show the last 8 or 9 years.

  1. Work out the year you started school by counting backwards.
  2. Write 'started school' next on the line next to this year.
  3. Choose more important events in your life. Write each event next to the year it happened.
  • Example - began to walk, lost first tooth, and went on holiday

Students discuss their timeline with a partner.

They write two questions that could be answered using the information in their timeline. Have their partner answer the questions.

Activity 4: calendar patterns

Calendar patterns (Talking about Patterns and Algebra pp 84-85)

This activity provides students with a link between reading calendars and number patterns. Students construct a calendar using numeral cards 1- 30 and then complete an investigation around the numbers in the calendar.


Australian curriculum

ACMMG062 Tell time to the minute and investigate the relationship between units of time. ACMMG086: Use am and pm notation and solve simple time problems.

Return to top of page Back to top