
[bookmark: _Hlk174021206][bookmark: _Toc113619911][bookmark: _Toc116471514][bookmark: _Toc116471576][bookmark: _Toc40780656]Computing Technology Stage 5 (Year 9 or 10) – teacher support resource
Software development – developing apps and web software
NSW Department of Education	
[Subject] [Stage X] (Year X) – sample assessment task [X] notification | 2

[image: NSW Government logo.]
© NSW Department of Education, Oct-24	2	
© NSW Department of Education, Oct-24	[image: Creative Commons Attribution license logo.]
[bookmark: _Toc147756672][bookmark: _Toc180668911]Teacher support resource
Teacher note: this resource has been designed to facilitate conversion into a student booklet by removing the answers within the response windows. Teacher notes can be deleted before distributing to students.
Student name:
Class:
Teacher:

Contents
Teacher support resource	1
Unit overview	4
Assessment task 1 overview	5
Submission details	7
Steps to success	8
What is the teacher looking for?	10
Assessment task 2 overview	11
Steps to success	12
What is the teacher looking for?	13
Glossary	14
The design and production process	17
Identifying and defining	18
Apps and web-based tools	18
Explore inputs, storage, transmission, processes and outputs in apps or web-based tools	22
Functional and non-functional requirements	27
The social impacts, and ethical and legal responsibilities in apps and web-software	29
Researching and planning	40
Understanding challenges in software development	41
Object-oriented programming	43
Elements and features of code	46
The perspective of diverse groups	52
Exploring the impact of app and web software on challenges	55
Design principles and issues relevant to apps	58
Self-assessment	68
Evaluate whether solutions meet specific requirements	69
Data privacy and cybersecurity in software development	71
Data protection and cybersecurity	79
Representing data	83
Data types	84
Producing and implementing	89
Flowcharts	89
Pseudocode	91
Desk checking	95
Real-world problems that can be solved by an app	100
Error type in programming	102
Producing and implementing	105
Record of project development	106
Practical development	108
Testing and evaluating	110
Explore careers in software development	111
References	114

[bookmark: _Toc180668912][image:]Unit overview
In this unit, students will develop a fundamental understanding of developing apps and web software.
During Weeks 1 to 8 of the learning sequence students will gain an understanding of the computational, design and systems thinking used in developing an app or web software. A range of apps and web software will be investigated that allow students to understand how innovation, enterprise and automation have inspired the evolution of computing technology.
During Weeks 9 to 18 of the learning sequence, students will design and test a system, creating an app which is coded and iterative in design. To develop their coding skills, students work to design, produce and evaluate algorithms and implement them in an object-oriented programming language. Students manage, document and explain individual work practices.
During Weeks 19 to 20 of the learning sequence, students showcase their project to the class and seek self- and peer-review. Students also investigate careers in app and web software development industries.

[bookmark: _Toc180668913]Assessment task 1 overview
Type of task: working in pairs or small groups, research, justify and develop a 3-minute pitch for an app product.
Outcomes being assessed:
A student:
selects and applies safe, secure and responsible practices in the ethical use of data and computing technology CT5-SAF-01
applies iterative processes to define problems and plan, design, develop and evaluate computing solutions CT5-DPM-01
manages, documents and explains individual and collaborative work practices CT5-COL-01
communicates ideas, processes and solutions using appropriate media CT5-COM-01
Computing Technology 7–10 Syllabus © NSW Education Standards Authority (NESA) for and on behalf of the Crown in the State of New South Wales, 2022.
Suggested weighting: 20%
Work collaboratively to research, justify and pitch a mobile phone app to solve an identified problem or need.
Investigate a real-world problem or need that can be satisfied by developing a mobile application (app).
The task will include using tools to define the needs of the app, brainstorming potential ideas, seeking feedback and creating a wireframe considering inputs, storage, transmission, processes and outputs.
There are several steps involved in this task. Read each point below carefully and make sure you read the ‘Steps to success’ and the marking criteria as this will provide you with specific detail of what you are required to complete to be successful in this task.

You are required to:
Identify a real-world problem that can be satisfied using a mobile app.
Brainstorm a variety of options or ideas that would satisfy this real-world need.
Conduct a peer-review of your ideas.
Describe the input, output, transmission and storage for your chosen web app in relation to the software being used.
Identify functional and non-functional requirements of the app.
Design a wireframe of your app.
Develop an engaging and informative pitch to justify your wireframe. Create a pitch deck that clearly outlines the following:
The real-world problem you are addressing.
Your brainstormed ideas – describe how your ideas came about and how they apply to the development of your app.
The feedback from your peers – what did your peers tell you about your idea and how did you take their feedback into consideration?
Identify your final idea, explaining why you decided to go with this app.
Outline the input, output, transmission and storage for your app, along with the functional and non-functional requirements.
Show your wireframe, including the feedback you received from your peers.
What is a pitch?
A pitch is the act of presenting your app idea to an audience (in this case, your classmates and teacher). Your pitch needs to be persuasive because you want your audience to see that your solution to your real-world problem is beneficial and will be useful to a wider audience.
A good pitch should:
engage your audience
take the audience on a clear and logical journey
leave the audience wanting to use your app.
Some suggestions when creating your pitch:
Your pitch deck should be engaging, but not overwhelming. Avoid slides with too much text or information on them, for example, numerous animations or busy transitions.
Use a font that is easy to read. The font type and colour should be accessible to all people. You can read more about accessibility when designing for further information.
What does it mean to be persuasive or write in a persuasive way?
When an author is writing in a persuasive manner, their aim is to present a viewpoint to the reader using evidence and facts to accept their argument. In this task, you will write in a persuasive manner to convince potential buyers or investors to use your app solution.
Links to support:
What is a Pitch Deck?
The secret to successfully pitching an idea (4:46).
[bookmark: _Toc1802388789][bookmark: _Toc180668914]Submission details
Students can submit their work digitally and complete a 3-minute presentation or video to pitch their app idea.

[bookmark: _Toc180668915]Steps to success
	Steps
	What I need to do

	Outline a real-world problem or need that can be satisfied using a mobile app
	Research a variety of possible problems and needs.
Outline the chosen real-world problem or need that can be satisfied using a mobile app
Identify the needs of the user

	Brainstorm a variety of ideas for the chosen real-world problem or need
	Brainstorm multiple ideas
Consider the following when creating ideas
Does it meet the problem or need?
How easy is it to create or produce this web app?
What are the time requirements to produce?
Does your group know how to make this on the designated web app software? If not, what learning will have to be done to be able to create it?

	Peer feedback on brainstormed ideas
	Seek peer-feedback on all ideas
From the feedback, choose one final idea that will be the focus

	Input, output, transmission, processes and storage
	In a table, describe the input, output, transmission, processes and storage for the chosen web app in relation to the software being used and the problem or need

	Identify functional and non-functional requirements
	Specify both the functional and non-functional requirements of your app, including stating the purpose of a system, describing user cases and developing test cases of inputs and expected outputs
For example: functional requirements which may include user security such as authentication, verification emails to users, usability, user requirements and business requirements
Non-functional requirements may include speed of subscription or purchase cost, user motivation or engagement

	Wireframe
	Create a wireframe of your chosen idea, including
what it will look like and what input, output and processing will occur
mock graphical user interface (UI) designs, colour, images and screen elements.
Conduct a peer-review (feedback) for your wireframe

	Pitch
	Develop an engaging and informative pitch deck communicating all sections of the task including the final idea and wireframe that is no more than 3 minutes in length
Peer-feedback should be given on each wireframe
Work collaboratively

[bookmark: _Toc2136337163]

[bookmark: _Toc180668916]What is the teacher looking for?
The teacher is looking for a thorough understanding and application of the app development process, starting from identifying real-world problems or needs that can be addressed through a mobile app to creating a comprehensive wireframe and pitch.
The teacher is looking for creative ideas for the chosen problem or need and the application of peer-feedback to improve the final idea that is communicated well within the pitch.

[bookmark: _Toc180668917]Assessment task 2 overview
Type of task: working in pairs or small groups, develop a mobile phone app product.
Outcomes being assessed:
A student:
selects and applies safe, secure and responsible practices in the ethical use of data and computing technology CT5-SAF-01
applies iterative processes to define problems and plan, design, develop and evaluate computing solutions CT5-DPM-01
manages, documents and explains individual and collaborative work practices CT5-COL-01
communicates ideas, processes and solutions using appropriate media CT5-COM-01
designs, produces and evaluates algorithms and implements them in a general-purpose and/or object-oriented programming language CT5-OPL-01
designs and creates user interfaces and the user experience CT5-DES-01
Computing Technology 7–10 Syllabus © NSW Education Standards Authority (NESA) for and on behalf of the Crown in the State of New South Wales, 2022.
Suggested weighting: 30%
[bookmark: _Hlk143607318]Work collaboratively to create your idea for a mobile phone app and solve your identified problem or need.
[bookmark: _Hlk143607326]Collaboratively develop a working version of the wireframe presented in Assessment task 1 to solve the identified problem or need.
This task will include using tools to create a prototype that has full functionality. Identify errors and correct them and seek additional peer-feedback to evaluate the final design.

[bookmark: _Toc177552461][bookmark: _Toc180668918]Steps to success
	Steps
	What I need to do

	Name and logo
	Create a name and logo for the prototype that is reflective of the chosen problem or need

	General-purpose programming
	Utilise appropriate general-purpose programming to create the working prototype. This includes correct handling of data being added, updated and deleted and conforming to the constructs of the language

	Screen elements
	Choose appropriate screen elements that are appropriate for the role
Utilise all of the following: buttons, text boxes, drop-down menus and multiple screens

	Prototype functionality and user experience
	Within the prototype, use a variety of aspects from the programming language or software that increase the functionality of the app
Within the prototype, use Intuitive navigation and smooth interactions.

	Testing and feedback
	Conduct rigorous testing of the prototype with the team
Utilise peer-feedback to test the prototype, incorporating feedback to enhance design and functionality

	Collaborative development
	Collaboratively develop the prototype
Work with the team through all stages of the task

[bookmark: _Toc177552462][bookmark: _Toc180668919]What is the teacher looking for?
The teacher is looking for a prototype that meets the identified need, utilises appropriate general-purpose programming and has intuitive navigation for improved user experience.
[bookmark: _Hlk143607368]The teacher is looking for collaborative development and communication while creating the app or web software product and responding to feedback throughout the whole process.

[bookmark: _Toc141776407][bookmark: _Toc180668920]Glossary
Many of the following words will gather more meaning to you as you work through this booklet.
Each time you see a new word in bold throughout this workbook you can add its definition in the table below in case you need to refer back to it later.
	Word
	Definition

	Algorithm
	An algorithm is a procedure used for solving or performing a computation.

	App
	A software program designed for a specific purpose to run on mobile devices or on a personal computer. An abbreviation of the word ‘application’.

	Cyber safety
	A term that refers to behaviour and the precautions that may be exercised when providing personal information in an online or digital environment.

	Cybersecurity
	Cybersecurity is the protection of internet-connected systems such as hardware, software and data from cyberthreats.

	Data
	A discrete representation of information using number codes. Data may include characters (for example, alphabetic letters, numbers and symbols), images, sounds and/or instructions that, when represented by number codes, can be manipulated, stored and communicated by digital systems. For example, characters may be represented using ASCII (American Standard Code for Information Interchange) code or images may be represented by a bitmap of numbers representing each ‘dot’ or pixel.

	Desk checking
	Desk checking is the process of manually reviewing the source code of a program. It involves reading through the functions within the code and manually testing them, often with multiple input values.

	Event-driven programming
	Event-driven programming is a programming paradigm in which the flow of the program is determined by events such as user actions (mouse clicks, key presses), sensor outputs or message passing from other programs or threads.

	Flowchart
	A graphical representation of the sequence of operations in an information system or program. Different symbols are used to draw each type of flowchart.

	Functional requirement
	Functional requirements define the software's goals, meaning that the software will not work if these requirements are not met.

	General-purpose programming language
	A coding or programming language used to write computer software. It uses letters, numbers and symbols arranged in a prescribed format (language) to instruct a computer how to carry out specific tasks. Also known as text-based programming.

	Logical operators
	Logical operators are generally used for combining 2 or more relational statements. An operator used to compare logical expressions that returns a result of true or false. Common logical operators include AND, OR and NOT.

	Non-functional requirement
	A non-functional requirement is a requirement that specifies criteria that can be used to judge the operation of a system, rather than specific behaviours. They are contrasted with functional requirements that define specific behaviour or functions.

	Object-oriented programming (OOP) language
	A type of programming language that organises code around data, or objects, rather than functions and logic. An object is a data field that has unique attributes and behaviour.

	Prototype
	A trial product or model built to test an idea or process to inform further design development. Its purpose is to see if and how well the design works and is tested by users and systems analysts. A prototype can be both a physical object and exist in digital form.

	Pseudocode
	Writing in plain English line by line (step by step) what you want the computer program to do.

	Relational operators
	A relational operator is a programming language construct or operator that tests or defines some kind of relation between 2 entities.

	Test case
	A test case is a set of actions performed on a system to determine if it satisfies software requirements and functions correctly.

	Use case
	A use case is a description of the ways in which a user interacts with a system or product.

Teacher note: for students with an English as an additional language or dialect (EAL/D) background, the glossary can be provided complete so that they have additional time to understand the key terms using bilingual dictionaries. The glossary can be provided to students in their preferred communication mode.

[bookmark: _Toc180668921]The design and production process
Throughout your study of Computing Technology, you will learn about design processes and how to apply them. You will explore different types of design processes and learn how to apply them in your design project.
The design and production process:
involves a sequence of organised steps which provide a solution to design needs and opportunities
may take a few seconds or minutes, such as when you select what clothes to wear, or may take years as in the case with the design of a motor vehicle
may involve one person or may involve many people
may be simple or complex, depending on the task
involves questioning (or evaluating) throughout the iterative process.
Figure 1 – flowchart of design and production process
[image: Design and production process diagram.

A flowchart labelled 'Ongoing evaluation' with a 2-headed arrow indicating both directions.
The steps of the flowchart are as follows:
1. Identifying and defining: identify and define the needs, opportunities and wants of a computing challenge, practise the technical skills, develop evaluation criteria.
2. Researching and planning: research, generate and practise ideas, be creative and propose new approaches to problems, explore new design opportunities.
3. Producing and implementing: build and implement ideas, apply a variety of skills and techniques to create products that meet set criteria, modify and iterate solutions.
4. Testing and evaluating: test and evaluate solutions/products, evaluate quality and effectiveness against the criteria, make judgements throughout the solution and use these to refine the product.
After testing and evaluating is a big arrow called 'Review if required to improve' and it goes all the way back up to the first part of the flowchart, indicating a cycle.]
[bookmark: _Toc180668922]Identifying and defining
[bookmark: _Toc166829707][bookmark: _Toc180668923]Apps and web-based tools
[image:] Teacher introduces the concept of apps and web-based tools. As a class watch What is a Web App? Web App vs. Native App (1:48).
[image:]Activity 1: define the following terms in the space below.
1. What is an app?
	Sample answer:
A program that is designed to perform a specific function directly for the user. Examples include Instagram and Uber.

What is a web software?
	Sample answer:
Software that runs on your web browser. Examples include Google workspace (G Suite) and Canva.

Activity 2: How have apps and web software evolved to meeting the changing needs of society?
[image:]Brainstorm ideas on how apps and web software have evolved to meet the changing needs of society.
Students should think about how society has changed over time and how these changes have influenced the development of apps and web software.
Students can also think about specific industries to connect real-world examples.
	Sample discussion points:
Evolving technology
As society becomes more reliant on technology, the demand for apps and websites that cater to various needs continues to grow. From communication and entertainment, to shopping and education, technology plays a crucial role in our daily lives.
Mobile revolution
The widespread adoption of smartphones and tablets has transformed the way we access information and engage with digital content. This shift has led to a surge in mobile app development to ensure that websites and services are optimised for smaller screens and touch interactions.
User-centric design
The increasing importance of user experience has pushed developers to prioritise the usability and accessibility of apps and websites. Today, creating intuitive interfaces and providing seamless navigation have become fundamental aspects of development.
Personalisation and customisation
People now expect apps and websites to provide personalised experiences that cater to their individual preferences. Developers are leveraging data analytics and artificial intelligence to deliver targeted content, recommendations and suggestions to users.
Connectivity and social integration
Social media has revolutionised how we connect and communicate with others. Apps and websites now integrate social features to allow users to share content, collaborate and interact with others in real-time.
Changing work dynamics
The needs of the modern workforce have also influenced app and web development. Remote work and the gig economy have given rise to productivity apps, project management tools and platforms for freelancers, enhancing productivity and connectivity.
Sustainability and social impact
Society's increasing focus on sustainability and ethical practices has influenced app and web development too. Developers are now creating solutions that promote eco-friendly practices, social responsibility and inclusivity.

[image:]Activity 3: research task
Choose a specific industry, such as:
	health care
	construction

	finance
	retail

	education
	food and beverage

	travel
	transportation

	fitness and wellness
	

In pairs or small teams, research and discuss how apps and web software have impacted the industry you have chosen and how the industry has evolved in response to societal needs and opportunities.
Consider how these tools have improved efficiency, accessibility or user experience.
Using Canva, create a one-page infographic to communicate your findings.
	Sample research on industries:
Healthcare: improved patient care and streamlined operations.
Finance: digital banking, investment and trading platforms.
Education: remote learning platforms, personalised learning experiences such as Khan Academy or Duolingo.
Travel and tourism: booking and reservation systems, destination guides and trip-planning tools.
Fitness and wellness: workout tracking and coaching apps, health and wellness monitoring devices.
Construction: project management and collaboration tools.
Agriculture: precision agriculture technologies, marketplace and supply chain management platforms.
Retail: e-commerce platforms, in-store technology integration for example immersive shopping experiences or digital signage.
Food and beverage: food delivery platforms, digital menu and ordering systems.
Transportation: ridesharing and mobility services, public transit and navigation apps.

Activity 4: research the history of apps and web-software.
[image:]Research the history and evolution of apps and web-software.
Start by reading about the history of mobile apps and the evolution of mobile apps and take note of key dates for significant events and changes throughout time.
Teacher note: this activity can be completed individually or in pairs. Students can demonstrate their use of web-based software by creating their timeline through software such as Canva or Adobe Express.

[bookmark: _Toc180668924]Explore inputs, storage, transmission, processes and outputs in apps or web-based tools
The concept of inputs, storage, transmission, processes and outputs in apps and web software refers to the fundamental elements that govern how these interactive experiences function.
Inputs represent user actions or external data.
Storage maintains the state and history of the system.
Transmission deals with data exchange.
Processes include computations and interactions within the system.
Outputs manifest as visible or audible feedback to users.
Figure 2 – system components
[image: The diagram shows the components of a system. Components are Inputs, Processes, Storage, Transmission and Outputs. There is a rightwards arrow from Inputs to Processes and Processes to Outputs. There is an up-down arrow between Storage and Processes and Processes and Transmission.]
Activity 5: exploring inputs, processes and outputs
[image:]As a class watch CS Basics: Input Process Output (2:50).
After watching the video, complete a Think, Pair, Share activity.
Think about how you would define the following in your own words: input, processes and output.
Pair with the person next to you, how do your definitions differ?
Share and report your definitions to the class.
	Report your findings below:

Activity 6: group brainstorming activity
[image:]In small groups, brainstorm 5 apps and web-based software that the group uses regularly. For each example, outline the following:
input
processes
transmission
storage
output.
	App and web-based software
	Outline of input, processes, transmission, storage and output

	Google Docs
	Sample answers:
Input: text input, file uploads and collaborative editing.
Processes: text editing, collaborative tools for example comments, suggested edits and revision history.
Transmission: real-time collaboration and sharing options.
Storage: cloud storage and version history.
Output: completed document, collaboration insights and export options.

	Snapchat
	Sample answers:
Input: multimedia input for example, photos, videos, direct messages, filters and lenses.
Processes: multimedia editing, story creation and AR.
Transmission: real-time messaging, stories and curated content.
Storage: temporary storage and memories.
Output: shared content, story views and discover content.

	Kahoot
	Sample answers:
Input: assignment creation and student submission.
Processes: quiz hosting, game mechanics and feedback.
Transmission: device synchronisation, response submission and results displaying.
Storage: quiz data storage and account data.
Output: quiz results, engagement data and learning insights.

	Spotify
	Sample answers:
Input: music selection, personalisation, user interactions for example like/dislike songs and adding songs to a playlist.
Processes: music streaming, recommendation algorithms and playlist creation.
Transmission: streaming protocol for example transmission of audio, data synchronisation and offline mode.
Storage: music library, user data and offline cache.
Output: music playback, personalised recommendations and social sharing.

Activity 7: inputs, storage, transmission, processes and outputs in apps or web-based tools
Choose an app or web-based tool within the following categories:
health and fitness tracker (Fitbit)
video conferencing (Zoom)
online shopping (Amazon).
[image:]Describe the input, process, transmission, storage and output for this web-based software.
	Sample answer:
Health and fitness tracker (for example Fitbit)
Input: user's physical activity, heart rate, sleep patterns and dietary information.
Storage: user profiles, activity history and health-related data.
Transmission: wireless data synchronisation between the tracker device and the companion app.
Processes: data analysis, goal tracking, activity recognition algorithms and personalised recommendations.
Output: activity summaries, sleep reports, heart rate monitoring and achievement badges.

Teacher note: this activity could be an extension to the group task where teams are allocated a different real-world example and they create a diagrammatical representation which links all the components together to further consolidate student understanding.

[bookmark: _Toc166829709][bookmark: _Toc180668925]Functional and non-functional requirements
Functional requirements are features or functions that enable users to accomplish their tasks (user requirements).
Non-functional requirements are how the system should perform (user expectation).
[image:]As a class read about functional and non-functional requirements and watch What are Non-functional Requirements and How Do They Work? (9:28).
Activity 8: defining key concepts
[image:]Research and define the following terms in relation to developing apps and web software.
1. What is a functional requirement?
	Sample answer:
The features and capabilities that the app must have to solve the problem or meet the need.
For example, the website will have a homepage.

What is a non-functional requirement?
	Sample answer:
The quality attributes of the app, such as security, performance and user experience. For example, Level 4 encryption.

What are use cases?
	Sample answer:
Use cases are descriptions of how users will interact with the app to achieve specific goals or tasks. They outline the steps a user will take and the expected results. A use case for a social media app might describe how a user creates a new post, including steps like logging in, composing the post, adding media and publishing it.

What are test cases?
	Sample answer:
Test cases are specific scenarios and conditions that are used to verify that the app behaves as expected. Test cases are designed to validate that the app functions correctly under various circumstances, such as different input values or user actions. A test case for the social media app might involve checking that a new post appears in the user's feed after it's published.

Activity 9: functional and non-functional requirements
[image:]Working in small groups, consider the following scenarios in Table 1 and identify the functional and non-functional requirements of the scenario.
[bookmark: _Ref180659857]Table 1 – functional and non-functional requirements
	Scenario
	Functional requirements
	Non-functional requirements

	Online banking app
	Allow users to view account balances
Allow users to transfer funds between accounts
	Security: the system must have a secure login and encryption to protect user data

	E-commerce website
	Allow users to add items to a shopping cart
Allow users to make payments for purchases
	Performance: the website should load quickly and handle many concurrent users

	To-do list app
	Users should be able to create an account with a unique username and password
Users can create tasks with details such as title, description, due date, priority and category
	Reliability: the app should always be reliable and available for use

	Online learning platform
	Students and teachers can create accounts with personal information and login credentials
Teachers can create and publish courses with lectures, assignments, quizzes and resources
	Performance: the platform should load quickly and handle concurrent user interactions without slowdowns

[bookmark: _Toc166829710][bookmark: _Toc180668926]The social impacts, and ethical and legal responsibilities in apps and web-software
When developing apps and web-software, developers must consider the social impact and ethical and legal responsibilities surrounding their work.
Activity 10: social, ethical and legal responsibilities
[image:]Working in small groups, read and discuss the social, ethical and legal responsibilities in Table 2 below. Consider each side of the dilemmas listed and outline how developers may navigate these issues.
[bookmark: _Ref179535412]Table 2 – social, ethical and legal responsibilities
	Issue
	Definition
	Explanation

	Social impact
	The effects that apps and web software can have on individuals and society, including how they influence behaviour, relationships and communities.
	Games can shape how people interact, communicate and collaborate.
They can promote positive behaviours like teamwork and problem-solving, but they can also lead to issues like addiction and social isolation.

	Ethical responsibility
	Making moral choices and decisions while developing or engaging with apps and web software.
	Software developers have a responsibility to create apps and web-based software that respect diverse cultures, avoid harmful stereotypes and promote fairness and inclusivity.
Users also have ethical responsibilities, such as treating others with respect with the software.

	Legal responsibility
	Rules and regulations set by governments or authorities that must be followed during software development, distribution and use.
	Software must adhere to laws related to age restrictions, content ratings, copyright and data protection.
Breaking these laws can lead to legal consequences for both developers and players.

After you have read and discussed Table 2 above, outline how social impact and ethical and legal responsibilities relate to apps and web software.
Think about the positive and negative for each, how the app and web software should be and what the developer will need to consider.
Group your ideas together in Table 3 below, then answer the question in full sentences in the space provided.
[bookmark: _Ref179535561]Table 3 – positive and negative
	Effect
	Social impact
	Ethical responsibility
	Legal responsibility

	Positive
	
	
	

	Negative
	
	
	

Computing Technology Stage 5 (Year 9 or 10) – teacher support resource – developing apps and web software | 1
Computing Technology Stage 5 (Year 9 or 10) – teacher support resource – developing apps and web software | 11

© NSW Department of Education, Oct-24	[image: Creative Commons Attribution licence logo]
© NSW Department of Education, Oct-24	[image: Creative Commons Attribution licence logo]
	Write your response here:

Activity 11: social and ethical scenarios
[image:]Working in small groups, students read and discuss the social and ethical scenarios. Students are required to look at both sides of the scenario and provide how the developers would navigate this dilemma.
Social and ethical scenario 1: data privacy versus personalisation
In the development of apps and web-based software, developers often face the dilemma of balancing data privacy concerns with the desire to personalise user experiences.
On one hand, personalised recommendations and tailored content enhance user engagement and satisfaction. However, to achieve this personalisation, developers must collect and analyse vast amounts of user data, raising concerns about privacy infringement and potential misuse of personal information.
	Possible discussion points:
Developers must navigate this dilemma by implementing privacy-enhancing technologies, obtaining informed consent from users and adopting transparent data practices.

Social and ethical dilemma 2: algorithmic bias versus fairness
Software developers must consider the challenge of addressing algorithmic bias and ensuring fairness in automated decision-making systems. Apps and web-based software often rely on algorithms to make predictions, recommendations and decisions that impact users' lives. However, these algorithms may inadvertently perpetuate biases based on factors such as race, gender or socioeconomic status, leading to unfair outcomes and discrimination.
	Possible discussion points:
Developers must grapple with the ethical implications of algorithmic bias and strive to moderate biases through rigorous testing, diverse data representation and algorithmic transparency.

Activity 12: ethical dilemma group activity
[image:]In groups, students are to read the scenarios relating to social and ethical issues and legal responsibilities. Consider the dilemma and answer the guiding questions as a team. Once completed report back to the class.
Scenario 1: privacy concerns in social media platforms
A popular social media platform is under scrutiny for its data privacy practices. It has been accused of collecting and sharing user data without adequate consent.
Table 4 – ethical dilemmas and guiding questions for Scenario 1
	Ethical dilemmas
	Guiding questions

	How can the platform balance the need for informed consent regarding data collection with the desire to provide personalised services and content?
How would the platform address concern about data ownership and giving its users control over their personal information?
	1. How can the platform ensure transparency and informed consent regarding data collection and sharing practices?
What measures should be in place to protect user data from unauthorised access and misuse?
How should the platform address user concerns about data privacy while maintaining personalised services?

Scenario 2: legal dispute
Two software development companies are involved in a legal dispute over intellectual property rights. One company accuses the other of copying proprietary code and design elements.
Table 5 – ethical dilemmas and guiding questions for Scenario 2
	Ethical dilemmas
	Guiding questions

	How should software developers navigate the boundaries of intellectual property protection?
What legal actions can be taken to resolve the intellectual property dispute?
	1. What steps should software developers take to ensure they are not infringing on the intellectual property of others?
How can software companies encourage innovation and creativity while respecting copyright and patent laws?
What ethical considerations arise when developing software that builds upon existing technologies or ideas?

Activity 13: ethical considerations, potential risks and strategies with copyright and IP laws
[image:]Intellectual property refers to creations of the mind. It could include a brand, logo, invention, design or artistic work. Intellectual property rights protect these ideas and give the creator rights to profit from their work. Explore the Australian Government – IP Australia website for more information.
Copyright provides legal protection for people who express original ideas and information in certain forms. The most common forms are writing, music and moving images. Copyright does not protect ideas or information, only the original expression of ideas or information. Explore the Copyright basics – The Attorney General's Department website for more information.
Reverse engineering is the process of analysing and extracting information from an app’s code, data and behaviour and can help a developer understand how an app works, find security vulnerabilities, change or modify features or create a new app based on an existing one. Read more about the reverse engineering of mobile apps.
[image:]In your groups, discuss the ethical considerations, potential risks and strategies that could be employed to comply with copyright and IP laws.
Table 6 – ethical considerations, potential risks and strategies
	Scenario
	Ethical considerations, potential risks and strategies

	A software developer uses code from a publicly available GitHub repository without checking the license terms.
	Ethical considerations:
1. Respect for intellectual property – ethical developers should respect the ownership and rights of the original code creator.
1. Transparency – developers should be transparent about the sources of their code and adhere to license terms.
1. Avoiding plagiarism – using code without proper attribution or permission can constitute plagiarism and is ethically unacceptable.
Potential risks:
1. Legal liability – using code without checking license terms can lead to legal consequences, such as copyright infringement claims.
Reputation damage – being associated with plagiarism or IP violations can harm the developer's reputation within the software development community.
Loss of trust – users and collaborators may lose trust in developers who do not adhere to ethical and legal standards.
Strategies for ensuring compliance:
1. License verification – always check the license terms of code repositories before using code from them.
Adherence to license terms – respect the conditions set by the license, such as providing attribution or sharing modifications.
Use of permissive licenses – preference code with permissive licenses that allow reuse with fewer restrictions.
Seek permission – if unsure about license terms, seek permission from the code owner before using their code.

	A company copies and modifies software from a competitor without obtaining permission.
	Ethical considerations:
1. Fair competition – ethical considerations include fair competition and respecting the intellectual property of competitors.
Honesty and integrity – copying and modifying software without permission is dishonest and lacks integrity.
Legal compliance – ethical developers should comply with copyright and IP laws and avoid infringing on others' rights.
Potential risks:
1. Copyright infringement – copying and modifying software without permission can lead to allegations of copyright infringement.
Legal consequences – the company may face legal actions, fines, or injunctions for IP violations.
Reputational damage – being known for unethical business practices can damage the company's reputation and trustworthiness.
Strategies for ensuring compliance:
1. Conduct due diligence – before using or modifying software, ensure it is not protected by copyright or other IP rights.
Obtain permission – seek permission from the software owner or licence holder before copying or modifying their software.
Use open-source alternatives – if possible, use open-source software or create original solutions instead of copying competitors.
Legal review – consult legal experts to ensure compliance with copyright and IP laws.

	A small game developer includes copyrighted artwork in their game without purchasing the appropriate licences.
	Ethical considerations:
1. Respect for creative work – ethical considerations include respecting the creative work of artists and creators.
Fair compensation – artists should be compensated fairly for the use of their artwork.
Transparency – developers should be transparent about the sources of artwork used in their games.
Potential risks:
1. Copyright infringement – using copyrighted artwork without proper licences can lead to copyright infringement claims.
Legal consequences – the developer may face legal actions, penalties, or compensation from the copyright owner.
Reputational damage – being associated with copyright infringement can harm the developer's reputation and credibility.
Strategies for ensuring compliance:
1. Purchase licences – always purchase the appropriate licences or obtain permission from the copyright owner before using copyrighted artwork.
Use royalty-free resources – use royalty-free or licensed artwork that allows commercial use without infringing on copyrights (creative commons).
Create original artwork – whenever possible, create original artwork or collaborate with artists to produce unique content for the game.
Copyright notices – include copyright notices and attributions for all copyrighted artwork used in the game.

	A programmer reverse-engineers a popular software application to create a competing product.
	Ethical considerations:
1. Fair competition – ethical considerations include fair competition and avoiding unethical practices like reverse engineering for commercial gain.
Intellectual property rights – respect the intellectual property rights of the original software creators.
Transparency – developers should be transparent about the methods used to create their software products.
Potential risks:
1. Intellectual property violation – reverse-engineering a software application can infringe on the original creators' intellectual property rights.
Legal consequences – the programmer may face legal actions, injunctions, or damages for IP violations.
Ethical scrutiny – engaging in questionable practices like reverse engineering can lead to ethical scrutiny and reputational damage.
Strategies for ensuring compliance:
1. Follow legal guidelines – ensure that reverse engineering is conducted within the bounds of legal guidelines and fair use principles and ensure compliance with IP laws.
Obtain permissions – seek permission or licences from the software creators before using reverse-engineered insights to develop competing products.
Focus on innovation – instead of copying existing software, focus on innovation and creating unique value propositions for the market.

[bookmark: _Toc166829711]

[bookmark: _Toc180668927]Researching and planning
Table 7 – how apps can address challenges
	Challenge
	Reason

	Environmental challenges
	Apps can promote environmental sustainability by providing tools for tracking carbon footprint, reducing waste and managing energy consumption.
Web-based software can facilitate online marketplaces for sustainable products, connect users with eco-friendly services and promote green initiatives.

	Lifestyle challenges
	Lifestyle apps can focus on health and wellness, offering fitness trackers, meal planning tools, mental health support and meditation guides.
Web software can provide educational resources on healthy living, personalised coaching services and community support networks for lifestyle improvement.

	Societal challenges
	Apps can address societal challenges by promoting inclusivity, diversity and social engagement through networking platforms, cultural awareness resources and community-building features.
Web-based software can facilitate online forums for discussions on societal issues, connect users with local resources and support groups and promote advocacy and activism.

	Economic challenges
	Apps can support economic empowerment by offering budgeting tools, financial management platforms, investment guidance and job search resources.
Web software can provide e-commerce platforms for small businesses, crowdfunding opportunities, financial education resources and access to microfinance services.

	Cyber safety challenges
	Apps and web software can enhance cyber safety by offering secure communication tools, encrypted messaging platforms, password managers and antivirus software.
Educational apps can provide cybersecurity training, tips for safe online behaviour and resources for protecting personal data and privacy online.

[bookmark: _Toc180668928]Understanding challenges in software development
Apps and web-based software can address various challenges in several ways listed in Table 8 below.
Activity 14: brainstorming app ideas
[image:]In groups, students are to brainstorm different app ideas that fulfil the given scenario.
[bookmark: _Ref180665310]Table 8 – challenges, scenarios and ideas
	Challenge
	Scenario
	Example ideas

	Environmental challenges
	Develop software solutions that promote environmental sustainability and encourage eco-friendly practices.
	Recycling apps, energy-saving monitoring tools, sustainable transportation platforms and eco-friendly lifestyle trackers.

	Societal inclusivity
	Create software solutions that promote inclusivity, diversity and accessibility within society.
	Diversity and inclusion training apps, accessibility tools for people with disabilities, cultural awareness platforms and community engagement apps.

	Cyber safety and security
	Design software solutions that enhance cyber safety, protect user data and prevent online threats.
	Secure password managers, antivirus and anti-malware software, digital privacy protection tools and cybersecurity education platforms.

	Economic challenges
	Develop software solutions that support economic empowerment, financial literacy and entrepreneurship.
	Financial management apps, budgeting tools, small business support platforms, microfinance and investment platforms.

	Health and wellness challenges
	Create software solutions that promote physical and mental health, fitness and wellbeing.
	Health tracking apps, mental wellness platforms, telemedicine and virtual healthcare services, fitness and nutrition guides.

	Community engagement
	Develop software solutions that foster community engagement, social activism and civic participation.
	Community organising platforms, social impact networks, voting and civic engagement apps, volunteering and donation platforms.

[bookmark: _Toc166829712][bookmark: _Toc180668929]Object-oriented programming
Object-oriented (OOP) programming is a programming model that organises design around objects or data rather than functions and logic. OOP allows the developer to focus on the object they want to manipulate, rather than the logic required to manipulate them. This type of programming is suited to large, complex apps that are actively updated and maintained. This method is beneficial for collaborative development and for code reusability, scalability and efficiency.
[image:]Activity 15: object-oriented programming
1. Explain object-oriented programming.
	Sample answer:
Object-oriented programming (OOP) is a way of organising and structuring code. It is based on the idea of objects, which are individual units of data and behaviour. Each object is an instance of a class, which is like a blueprint or template for creating objects

List some examples of an object-oriented programming language in the space below.
	Sample answers include:
C++
Java
C#
Python
Ruby
Swift.

Teacher note: if you are unfamiliar with object-oriented programming principles in Python, utilise the Object Oriented Programming: Getting Started for Australian Teachers resource. There are videos and activities that can be used to assist in explaining and for students to demonstrate their understanding.
[image:]Activity 16: features of object-oriented programming language
Complete Table 9 below with features of an object-oriented programming language.
[bookmark: _Ref180665328]Table 9 – features of an object-oriented programming language
	Feature
	Use in object-oriented programming language

	Classes
	Sample answer:
The core concept of object-oriented programming is the class, which is a blueprint or template for creating objects.

	Objects
	Sample answer:
Objects are instances of a class and have their own properties and behaviour.

	Abstraction
	Sample answer:
Remove some characteristics from a class to have only necessary or essential properties and behaviours.

	Encapsulation
	Sample answer:
An object-oriented language allows for encapsulation, which means that the data and behaviour of an object can be hidden from the rest of the program and only exposed through a set of defined interfaces.

	Inheritance
	Sample answer:
Object-oriented languages support inheritance, which allows for the creation of new classes that inherit the properties and behaviour of existing classes. This allows for the reuse of existing code and the creation of a hierarchical class structure.

	Polymorphism
	Sample answer:
Object-oriented languages support polymorphism, which allows objects of different classes to be treated as objects of a common superclass. This allows for more flexible and reusable code.

[bookmark: _Toc166829713]Activity 17: features of object-oriented programming language
[image:]Using the game Space Invaders as reference, create a list of properties and behaviours (attributes and methods) for the main gameplay. Think about how the parts of the game function, for example the player has lives and can move left and right.
Table 10 – properties and behaviours of Space Invaders gameplay
	Space Invaders classes
	Properties and behaviours

	Player
	Properties:
image/design
lives
firing speed.
Behaviours:
move
fire
die.

	Aliens
	Properties:
image/design
lives.
Behaviours:
move
shoot.

	Barrier
	Properties:
image/design
lives/hit points.
Behaviours:
barrier break down.

	Bullet
	Properties:
design/colour
speed/power.
Behaviours:
movement.

[bookmark: _Toc166829714][bookmark: _Toc180668930]Elements and features of code
[image:]As a class watch Computer Science Basics: Sequences, Selections, and Loops (2:26).
While watching the video, complete the definitions and questions for standard control structures, including examples where possible.
Table 11 – definitions and questions for standard control structures
	Logic
	Definition

	Sequences
	Sample answer:
Sequences are a set of instructions that are executed in a specific order, one after the other.

	Selection (branching)
	Sample answer:
Branching allows for the creation of different paths or outcomes based on conditions.

	Iteration (loop)
	Sample answer:
Iteration is the repeated execution of a certain set of instructions, which can be used to create loops or cycles in the game or simulation.

[image:]Activity 18: sequence control structures and relational operators
1. What is the benefit of the sequence control structure when designing games?
	Sample answer:
The benefit of the sequence control structure in game design is that it ensures actions and events occur in a specific, logical order, creating a predictable flow of gameplay. This allows game designers to structure tasks, events, or processes in a step-by-step manner, making it easier to control how the game progresses and ensuring that player interactions, animations and events happen in a coherent and consistent sequence. It also helps in debugging and modifying the game logic, as each step follows the previous one in a clear, linear progression.

What are logical operators?
	Sample answer:
Logical operators are used to combine multiple conditions and create more complex conditions. They are used to evaluate the truthfulness of certain statements and determine the outcome of certain conditions.
The 3 most common logical operators are:
AND (&& or and): the AND operator returns true if both of the conditions being compared are true.
OR (|| or or): the OR operator returns true if at least one of the conditions being compared is true.
NOT (! or not): the NOT operator negates the truthfulness of a statement.

What are relational operators?
	Sample answer:
Relational operators are used to compare values and determine the outcome of certain conditions. They are used to evaluate the relationship between 2 values and return a Boolean value (either true or false). The most common relational operators are:
Greater than (>)
The greater than operator returns true if the value on the left side of the operator is greater than the value on the right side.
Less than (<)
The less than operator returns true if the value on the left side of the operator is less than the value on the right side.
Greater than or equal to (>=)
The greater than or equal to operator returns true if the value on the left side of the operator is greater than or equal to the value on the right side.
Less than or equal to (<=)
The less than or equal to operator returns true if the value on the left side of the operator is less than or equal to the value on the right side.
Equal to (==)
The equal to operator returns true if the value on the left side of the operator is equal to the value on the right side.
Not equal to (!= or <>)
The not equal to operator returns true if the value on the left side of the operator is not equal to the value on the right side.
These relational operators are essential in making decisions in games and simulations and are commonly used in control structures such as if-else statements and loops, to determine the flow of the code.

[bookmark: _Toc166829715][image:]Practical application – learning through coding
Students could use online learning resources to learn and enforce the key elements and features of code. For example: Grok Academy or w3schools.
The below explanations are generic but could be adapted to be in any other general-purpose programming language that is being used.
Table 12 – examples for understanding elements and features of code
	[bookmark: _Hlk165898654]Elements and features of code
	Explanation

	Variables
	Storing and manipulating data, representing values or states within the program
Variable names (for example count, total_amount), data types (integer, float, string), variable assignments (= operator)

	Functions
	Encapsulating reusable code blocks, performing specific tasks or operations and modularising code
Function names (for example calculate_area, print_message), parameters (input arguments), function calls (depends on language chosen)

	Conditional statements
	Controlling program flow based on conditions, making decisions and executing different code paths
Keywords (for example if, else, elif), comparison operators (e.g., ==, <, >), logical operators (and, or, not)

	Loops
	Repeating code execution, iterating over data structures (lists, arrays), processing multiple items
Loop types (for example for, while), loop variables, loop conditions, loop body

	Data structures
	Organising and storing data, accessing and manipulating data elements, representing collections of related values
Lists, arrays, dictionaries, sets, tuples

	Classes and objects
	Object-oriented programming concepts, encapsulation, inheritance, polymorphism
Class definitions, object instances, attributes (properties), methods (behaviours)

	Comments
	Providing explanatory notes, documenting code functionality and improving code readability
Comments (single-line # or multi-line ''' or """), documentation strings (docstrings)

	Imports and libraries
	Features: Utilising external code and functionality, modularising codebase, leveraging existing libraries and frameworks
Import statements (import module_name, from module_name import function_name), library functions and modules

	File input/output
	Reading and writing data to files, file management, data persistence
File operations (open, read, write, close), file paths, file modes (r, w, a)

[bookmark: _Toc166829716]Activity 19: identifying features in existing code
[image:]Students identify the features of the code in each of the samples below. Depending on the general-purpose programming language chosen, the sample code could be changed.
Table 13 – features of code
	Scenario
	Features
	Sample code example

	Temperature converter
	Variables (for storing temperature values)
User input (to enter temperature values)
Conditional statements (to choose conversion direction)
Mathematical operations (to perform temperature conversion)
Output (displaying converted temperature)
	[image: Code sample for temperature converter:
def celsius_to_fahrenheit(celsius):
 return (celsius * 9/5) + 32

def fahrenheit_to_celsius(fahrenheit):
 return (fahrenheit - 32) * 5/9

print("Temperature Converter")
print("1. Celsius to Fahrenheit")
print("2. Fahrenheit to Celsius")

choice = input("Enter your choice (1 or 2): ")

if choice == '1':
 celsius = float(input("Enter temperature in Celsius: "))
 converted_temp = celsius_to_fahrenheit(celsius)
 print(f"{celsius}°C is equal to {converted_temp}°F")
elif choice == '2':
 fahrenheit = float(input("Enter temperature in Fahrenheit: "))
 converted_temp = fahrenheit_to_celsius(fahrenheit)
 print(f"{fahrenheit}°F is equal to {converted_temp}°C")
else:
 print("Invalid choice. Please enter 1 or 2.")
]

	Guess the number game
	Random number generation
Use of a library
User input and validation (guessing a number)
Loop (to allow multiple guesses until the correct number is guessed)
Conditional statements (to check if the guess is correct)
Feedback messages (informing the player if their guess is too high or too low)
	[image: Code sample for Guess the number game:

import random

Generate a random number between 1 and 100
secret_number = random.randint(1, 100)
attempts = 0

print("Welcome to the Guess the Number Game!")
print("I'm thinking of a number between 1 and 100.")

Get user input and validate
while True:
 while True:
 try:
 guess = int(input("\nEnter your guess (1-100): "))
 if 1 <= guess <= 100:
 break
 else:
 print("Please enter a number between 1 and 100.")
 except ValueError:
 print("Please enter a valid number.")

 attempts += 1

 # Check if the guess is correct
]

Teacher note: teachers may give a description and key features and ask students to write the code in Python.
Alternatively, teachers can provide the sample code and ask students to identify the key features, then move on to visually representing code through given features.
[bookmark: _Toc166829717][bookmark: _Toc180668931]The perspective of diverse groups
Students will be divided into teams to research how apps and web software are seen from the perspective of diverse groups. They will analyse the inclusivity of existing digital platforms and create a presentation that focuses on factors such as language support, cultural representation, accessibility and user interface design. Students will reflect on the importance of inclusivity in digital platforms and the impact of inclusive design on user experiences for their assigned group.
Activity 20: perspective of diverse groups research
[image:]Considering the perspective of diverse groups when developing apps and web software is an important part of the design process.
By considering these perspectives, developers are creating inclusive products for all members of our community.
In this task, you will be working in small groups and assigned one of the following perspectives to consider:
Aboriginal and Torres Strait Islander people
culturally and linguistically diverse people
people of different ages and gender
people with disability.
1. In your groups, brainstorm potential perspectives they may need to consider for the group you have been assigned to research.
Research and identify factors that could contribute to the inclusivity of apps and websites for your specific group. For example, accessibility features for people with disability, avoiding cultural assumptions and considering the ownership of art works and images of or by Aboriginal and Torres Strait Islander people, considering the needs of older and younger users when developing an app.
Create a presentation that identifies the perspectives you have researched and reflects on the importance of inclusivity and its impact on the user experience.
	Guidance for the research task:
Inclusive design principles
Key elements of inclusive design, such as accessibility, cultural sensitivity, language support and user interface considerations for different age groups and abilities.
Accessibility features
Explore the accessibility features present in apps and web software, focusing on functionalities that support users with disabilities, language translation options and features that cater to the specific cultural and age-related needs of diverse groups.
User experience analysis
Evaluating the ease of navigation, language options, visual representation and the presence of inclusive content and features.
Ethical considerations
Respecting cultural sensitivities, privacy and the diverse needs of potential users.

[image:]Activity 21: brainstorming and ideation
As a class, generate potential ideas for new apps and web software concepts that prioritise inclusivity for diverse groups. Consider features, functionalities and design elements that would cater to the specific needs and perspectives of the diverse groups researched in Activity 20.
Each group will choose a concept that was brainstormed and creates a pitch for the new inclusive app or web software which communicates how this idea addresses the needs and perspectives of the diverse group, using thoughtful consideration of inclusivity.
Record your notes for the pitch in the space below.
	

[bookmark: _Toc180668932]Exploring the impact of app and web software on challenges
Activity 22: app case studies
[image:]You will be assigned to a group and given an app case study to investigate.
Read the assigned case study in Table 14 below. Then create a concept map that outlines how the app deals with environmental, lifestyle, societal and economic challenges and cyber safety considerations.
[bookmark: _Ref180665383]Table 14 – app case studies
	App case study
	Possible points

	EcoChallenge
EcoChallenge is a web and mobile app that promotes sustainability and environmental consciousness among individuals and communities.
	1. Environmental challenge: the app encourages users to take on eco-friendly challenges such as reducing waste, conserving energy and adopting sustainable lifestyle practices.
Societal impact: by fostering awareness and behaviour change, EcoChallenge contributes to a more sustainable society and promotes collective action for environmental preservation.
Cyber safety measures: the app prioritises user privacy and data security, employing encryption protocols and secure data storage to protect user information.
Economic aspect: while the app is free for individual users, it may generate revenue through partnerships with eco-friendly brands and organisations.

	Headspace
Headspace is a meditation and mindfulness app designed to improve mental wellbeing and reduce stress.
	1. Lifestyle challenge: the app addresses the modern lifestyle challenge of stress management and mental health by offering guided meditation sessions and mindfulness exercises.
Societal impact: Headspace contributes to a healthier society by promoting mental wellbeing and resilience, thereby reducing the societal burden of stress-related illnesses.
Cyber safety measures: the app prioritises user privacy and confidentiality, implementing strict data protection measures and secure authentication methods.
Economic aspect: while the app offers a freemium model with basic features for free, it generates revenue through premium subscriptions and partnerships with healthcare providers.

	Khan Academy
Khan Academy is an educational platform offering free online courses and resources across various subjects.
	1. Economic challenge: the platform addresses economic challenges related to education accessibility by providing free, high-quality educational content to learners worldwide.
Societal impact: Khan Academy empowers individuals from diverse backgrounds, contributing to a more educated and skilled society.
Cyber safety measures: the platform ensures data security and user privacy, adhering to strict guidelines for data encryption, secure login processes and protection against cyber threats.
Environmental aspect: while not directly related to environmental challenges, Khan Academy's online format reduces the environmental impact associated with traditional printed materials and commuting to physical classrooms.

	Uber
Uber is a ride-hailing app that revolutionised the transportation industry by providing on-demand rides and promoting shared mobility.
	1. Economic challenge: Uber addresses economic challenges related to transportation affordability and accessibility by offering a cost-effective alternative to traditional taxis and private cars.
Societal impact: the app contributes to a more connected society by facilitating convenient and efficient transportation options, reducing reliance on personal vehicles and easing traffic congestion in urban areas.
Cyber safety measures: Uber prioritises user safety and security, implementing features such as GPS tracking, driver background checks, ride feedback mechanisms and emergency assistance options.
Environmental aspect: while not directly focused on environmental challenges, Uber's promotion of ride-sharing and efficient routing contributes to reduced emissions and environmental impact compared to individual car ownership and inefficient transportation methods.

[bookmark: _Toc180668933]Design principles and issues relevant to apps
Activity 23: design principles
[image:]Research the design principles listed in Table 15 below and describe how each principle applies to designing apps and web-based software.
[bookmark: _Ref180665412]Table 15 – design principles in app and web-based software
	Design principle
	Description

	User-centred design
	Sample answer:
Designing apps with a focus on user needs, preferences and behaviours to create intuitive and engaging experiences.

	Visual design
	Sample answer:
Incorporating elements such as colour schemes, typography, icons and layout to enhance aesthetics and usability.

	Navigation and information architecture
	Sample answer:
Structuring the app's content and navigation paths logically to ensure easy and intuitive user navigation.

	Accessibility
	Sample answer:
Ensuring that the app is accessible to users with disabilities, including considerations for screen readers, colour contrast and alternative input methods.

	Performance and optimisation
	Sample answer:
Optimising app performance, load times and responsiveness across various devices and network conditions.

	Security and privacy
	Sample answer:
Implementing security measures to protect user data and privacy, including encryption, authentication and data handling practices.

[bookmark: _Hlk166139940]

Activity 24: design challenge scenarios
[image:]As a class watch How to create your first wireframe (8:34) and view examples of wireframes to examine the different design options that can be incorporated into a design. To create a wireframe diagram, use software such as Microsoft Word, Canva, Adobe Express or Figma. As a class discuss, What is wireframing?
There are 8 different apps outlined in the design challenge, including:
	health and fitness
	travel planning

	education
	finance management

	e-commerce
	entertainment streaming

	social networking
	environmental awareness.

Choose one of the app ideas to sketch a wireframe or design for the app.
Figure 3 – wireframe diagrams
[image: Examples of a wireframe diagram including low fidelity, high fidelity, mock up and prototype.]
‘Wireframe mockup prototype’ by Alexandruionascu,is licensed under CC BY-SA 4.0.
Students should consider in their wireframes the following:
user story
navigation
basic visual design elements.
Table 16 – app 1
	App 1
	Design challenge
	Design principles to consider

	Health and fitness app
	Design an interface for a health and fitness app that tracks users' exercise routines, nutrition and progress towards fitness goals.
	User-centred design: personalised workout plans based on user goals and fitness levels, intuitive navigation for easy access to features like tracking workouts and nutrition
Visual design: clear and visually appealing UI elements for displaying exercise routines, progress charts and nutritional information, colour coding for different types of exercises or food categories
Navigation and information architecture: categorised sections for workouts, nutrition tracking, progress logs and settings, with a hierarchical structure for easy navigation between pages
Accessibility: adjustable font sizes, high contrast UI for readability, voice-guided workout instructions for users with visual impairments
Performance and optimisation: fast loading times for workout videos and nutrition data, optimising battery usage during workout tracking
Security and privacy: secure login with two-factor authentication and encrypted data storage for user health information

Table 17 – app 2
	App 2
	Design challenge
	Design principles to consider

	Education app for students
	Create a user-friendly interface for an education app targeted at students, including features for accessing course materials, submitting assignments and communicating with instructors.
	User-centred design: student dashboard with course schedules, assignment deadlines and grades, intuitive navigation for accessing course materials and discussions
Visual design: organised layout for course content, interactive elements like quizzes and multimedia resources, consistent colour scheme and branding
Navigation and information architecture: course hierarchy with modules, lessons and assessments, search functionality for finding specific topics or materials
Accessibility: screen reader compatibility, text-to-speech options for course content, adjustable contrast for readability
Performance and optimisation: quick loading of course materials and multimedia content, offline access for studying on the go
Security and privacy: secure login for students and instructors, permissions management for accessing course content and grades

Table 18 – app 3
	App 3
	Design challenge
	Design principles to consider

	e-commerce app for local businesses
	Design a shopping app specifically for local businesses, allowing users to browse products, make purchases and support local vendors.
	User-centred design: personalised user experience based on purchase history, preferences and browsing patterns. Intuitive navigation for quickly discovering and purchasing products, with features like quick search, wishlists and personalised recommendations.
Visual design: clear and visually appealing UI elements to display product listings, vendor information and promotions.
Navigation and information architecture: categorised sections for product browsing, vendor information, order tracking, and user settings. Ensure a hierarchical structure for easy navigation between product categories and purchase processes.
Accessibility: adjustable font sizes, high-contrast UI for readability, and voice search for users with visual impairments. Include options like screen reader compatibility and alternative text for product images to ensure usability for all.
Performance and optimisation: fast loading times for product images, vendor pages and payment processing. Optimise the app for efficient battery usage, especially during browsing and order placement.
Security and privacy: secure login options with two-factor authentication, encrypted storage for user payment and personal information, and secure transaction handling.

Table 19 – app 4
	App 4
	Design challenge
	Design principles to consider

	Social networking app for community engagement
	Develop a social networking app that promotes community engagement, events and discussions among users with shared interests or geographic locations.
	User-centred design: customisable user profiles, news feed algorithms based on user interests and interactions, easy sharing and commenting features
Visual design: engaging visual content such as images and videos in the news feed, consistent design elements for profile pages and posts
Navigation and information architecture: clear navigation tabs for home, profile, notifications and messaging, content filtering options for personalised feed
Accessibility: captioning for multimedia content, text resizing options, voice commands for navigation
Performance and optimisation: efficient content caching for faster load times and push notifications for real-time updates
Security and privacy: privacy settings for controlling profile visibility and post audience, content moderation features and secure messaging with end-to-end encryption

Table 20 – app 5
	App 5
	Design challenge
	Design principles to consider

	Travel planning app
	Create an app interface for planning and organising travel itineraries, including features for booking flights, accommodations and activities, as well as providing travel tips and recommendations.
	User-centred design: customisable travel itineraries based on user preferences, interactive maps with points of interest and directions, real-time flight and accommodation booking
Visual design: inspirational travel imagery, intuitive booking forms with clear pricing and availability information and map overlays for trip routes
Navigation and information architecture: structured itinerary sections for flights, accommodations, activities and dining, filtering options for refining search results
Accessibility: voice-guided navigation for directions, alt text for map images, screen reader support for itinerary details
Performance and optimisation: quick search and booking functionalities, offline access to travel plans, low data usage for map and itinerary updates
Security and privacy: secure payment processing.

Table 21 – app 6
	App 6
	Design challenge
	Design principles to consider

	Finance management app
	Design a finance management app that helps users track expenses, manage budgets and set financial goals, with features for expense categorisation, bill reminders and financial insights.
	User-centred design: customisable budgeting tools based on user income and expenses, interactive expense tracking with categorisation and analysis
Visual design: clear graphs and charts for financial insights, colour-coded expense categories, intuitive dashboard for budget overview
Navigation and information architecture: sections for income, expenses, savings goals and reports, drill-down options for detailed transaction views
Accessibility: voice commands for expense input, high contrast mode for visibility, screen reader compatibility for financial data
Performance and optimisation: fast data syncing across devices, offline mode for expense logging, automated alerts for budget milestones
Security and privacy: strong encryption for financial data storage, secure authentication methods, privacy controls for data sharing and analytics

Table 22 – app 7
	App 7
	Design challenge
	Design principles to consider

	Entertainment streaming app
	Develop an interface for an entertainment streaming app that offers a wide range of content such as movies, TV shows, music and podcasts, with personalised recommendations and user profiles.
	User-centred design: personalised content recommendations based on user viewing history and preferences, easy content discovery and browsing
Visual design: engaging media player interface with playback controls, curated playlists and collections and visually appealing artwork for movies and music
Navigation and information architecture: sections for genres, trending content, user playlists, search filters and detailed metadata for media content
Accessibility: audio descriptions for visually impaired users, subtitle customisation options and keyboard shortcuts for media controls
Performance and optimisation: adaptive streaming quality based on network conditions and offline downloads for content viewing without the internet
Security and privacy: secure user profiles with password protection, parental controls for content restrictions and encryption for payment transactions

Table 23 – app 8
	App 8
	Design challenge
	Design principles to consider

	Environmental awareness app
	Create an app interface focused on raising environmental awareness, featuring educational content, tips for eco-friendly living, local environmental events and ways for users to take action for sustainability.
	User-centred design: educational content tailored to user interests and learning preferences, interactive quizzes and challenges for eco-friendly practices
Visual design: infographics and interactive visuals for environmental data, gamification elements for engaging user participation
Navigation and information architecture: sections for eco-tips, local environmental initiatives, climate data and user contributions and search functionality for specific topics
Accessibility: text-to-speech options for content consumption, alt text for images and graphs and colourblind-friendly design elements
Performance and optimisation: fast content loading for quick access to environmental news and updates, data compression for minimal data usage
Security and privacy: secure user accounts with privacy settings, data encryption for user contributions and transparent data handling policies

Teacher note: this activity could be completed in pairs, with the teacher assigning a certain scenario to groups. Additionally, other scenarios could be chosen depending on the demographic of the class. After completing a self-evaluation, students could also attempt multiple design challenges.
[bookmark: _Toc147756701][bookmark: _Toc180668934]Self-assessment
Tick the appropriate box for each of the learning intentions.
1 = I need a challenge, I can teach this to others.
2 = I can do this confidently.
3 = I can do this, but need more practice and revision.
4 = I can do this with some assistance.
Table 24 – self-assessment of learning intentions
	Learning intentions
	1
	2
	3
	4

	Break down a user interface into its basic steps so that they can be applied to a digital solution.
	
	
	
	

	Determine the user interface needed to complete each step of the interactive media product.
	
	
	
	

	Plan how each user interface component will look.
	
	
	
	

	Design a wireframe.
	
	
	
	

	Represent the user interface in an interactive media product.
	
	
	
	

	Evaluate a peer’s product based on their choice of user interface.
	
	
	
	

	Test and evaluate a UI to improve overall efficiency.
	
	
	
	

	Evaluate a peer’s product.
	
	
	
	

[bookmark: _Toc166829718][bookmark: _Toc180668935]Evaluate whether solutions meet specific requirements
[image:]Activity 25: evaluate a solution against a criteria
Students will use their prior learning of social and ethical considerations, legal responsibilities and cybersecurity principles to evaluate a created solution.
Students will look at an existing app and evaluate it against the criteria outlined in Table 25 below. Some of the criteria may not apply to the solutions students are evaluating. As they conduct their evaluation, students can make suggestions on how they think the app could be adapted to meet the criteria.
[bookmark: _Ref180665442]Table 25 – social and ethical considerations, legal responsibilities and cybersecurity principles
	Responsibilities
	Criteria

	Social impact
	Does the app promote inclusivity and diversity, respecting users' cultural backgrounds, beliefs and values?
Does the app contribute positively to societal wellbeing, addressing social issues or promoting social responsibility?
Are there features in the app that ensure user safety, wellbeing and mental health?
Does the app encourage ethical behaviour, responsible content sharing and respectful communication among users?

	Ethical considerations
	Does the app have clear and transparent privacy policies regarding data collection, storage and usage?
Does the app obtain informed consent from users before collecting their personal information?
Are there mechanisms in place to protect users' confidentiality and anonymity, especially for sensitive data?
Does the app avoid deceptive or manipulative practices, such as misleading advertisements or hidden fees?
Does the app comply with ethical guidelines and industry standards for software development?

	Legal responsibilities
	Is the app compliant with relevant laws and regulations, such as data protection laws?
Does the app respect intellectual property rights, including copyrights, trademarks and patents?
Are there terms of service and user agreements that outline users' rights and responsibilities?
Does the app have mechanisms for reporting and addressing legal issues, such as copyright infringement or cyberbullying?

	Cybersecurity principles
	Does the app use secure authentication mechanisms, such as strong passwords, multi-factor authentication or biometrics?
Is data encryption implemented to protect sensitive information during transmission and storage?
Are there measures to prevent unauthorised access, data breaches and cyberattacks?
Does the app regularly update security patches and software versions to mitigate vulnerabilities?
Are there protocols in place for incident response, data breach notification and user data recovery in case of security incidents?

	Overall user experience
	Is the app user-friendly, intuitive and accessible to users from diverse backgrounds and abilities?
Does the app provide adequate support and guidance for users to navigate its features and functionalities?
Are there options for users to provide feedback, report issues and request assistance within the app?
Does the app prioritise user satisfaction, engagement and trust through responsive design and timely updates?

Teacher note: this activity could be completed after the Assessment task and students can use a peers' work to evaluate their own.

[bookmark: _Toc166829719][bookmark: _Toc180668936]Data privacy and cybersecurity in software development
Activity 26: Why is data privacy and cybersecurity important in software development?
[image:]Using the 5 whys template, provide 5 reasons why it is important to have data privacy and cybersecurity in today’s digital world, considering personal concerns about sharing information online.
	[bookmark: _Hlk166139017]Sample discussion points:
Protection of personal information. Safeguarding personal data such as names, addresses and financial details is essential to prevent identity theft and fraud.
Preservation of individual rights. Data privacy ensures that individuals have control over their personal information, respecting their right to privacy.
Prevention of unauthorised access. This helps in preventing unauthorised access to sensitive data, reducing the risk of data breaches.
Trust and reputation. Businesses and organisations that prioritise data privacy earn the trust of customers and stakeholders, enhancing their reputation.
Protection against cyber threats. Cybersecurity measures defend against a wide range of threats, including malware, ransomware and phishing attacks.
Preservation of data integrity. This ensures the accuracy and reliability of data, preventing unauthorised changes or deletions.
Protection of intellectual property. This safeguards intellectual property, trade secrets and proprietary information from theft and espionage.
Global connectivity. In an interconnected world, cybersecurity is vital for maintaining secure communications and collaborations across borders.
Personal safety. In the era of smart devices, cybersecurity is essential for preventing unauthorised access to connected vehicles, medical devices and home automation systems.
Ethical and legal obligations. Cybersecurity compliance is required by various laws and regulations to protect individuals' and organisations' digital assets.

It is important to note that not all apps and programs collect the same data and users should carefully review an app's privacy policy or terms of service before downloading and using it to understand what data is being collected and how it will be used.
[image:]Activity 27: data collection
How do apps and web-based software developers collect data?
	Sample answers:
User input and forms: apps and websites often collect data directly from users through input fields, forms and surveys. This data can include personal information (name, email, address), preferences, feedback and other user-generated content.
Cookies and tracking technologies: web software can use cookies, tracking pixels and similar technologies to gather information about user interactions, browsing behaviour and preferences. This data helps in personalising content, improving user experience and analysing website performance.
Device information: apps can access device-specific information such as device type, operating system, hardware specifications and location data (GPS coordinates). This data is used to optimise app functionality, deliver location-based services and analyse user demographics.
Analytics tools: software developers integrate analytics tools like Google Analytics or custom analytics solutions to track user interactions, app usage patterns and performance metrics. These tools provide insights into user behaviour, app performance and user engagement.
Social media integration: apps and websites often integrate with social media platforms (for example Facebook, X and Instagram) to collect data from user profiles, social interactions and shared content. This data can be used for targeted advertising, social sharing features and user authentication.
Surveys and feedback mechanisms: apps and websites may include surveys, feedback forms, or rating systems to gather user feedback, opinions and satisfaction levels. This qualitative data helps in improving product features and user experience.
Transactional data: e-commerce apps and websites collect transactional data related to purchases, orders, payments and shipping information. This data is essential for processing transactions, managing inventory and providing customer support.
Usage logs and error reports: apps and software collect usage logs, error reports and crash data to identify bugs, performance issues and user experience problems. Developers use this data for troubleshooting, debugging and optimising software performance.
Consent and permissions: it is important to note that data collection should always be done with user consent and in compliance with privacy regulations. Apps and websites typically request user consent for data collection and provide options for users to manage their privacy settings.

[bookmark: _Hlk144373999][image:]Activity 28: Think, Pair, Share
Read Table 26 below, then in pairs, complete a Think, Pair, Share activity on the following question.
Why do app developers collect data from users of their apps and/or web software?
[bookmark: _Ref180665464]Table 26 – reasons for collecting data
	Reason
	Explanation

	User personalisation
	By collecting data about user preferences, behaviour and interactions, developers can personalise the app experience for each user.
This includes recommending relevant content, suggesting personalised products or services and customising app features to match user preferences.

	Improving user experience
	Data collection helps developers understand how users navigate the app, which features they use most frequently and where they encounter challenges.
This information is valuable for optimising app design, streamlining user workflows and addressing usability issues to enhance overall user experience.

	Performance optimisation
	Data collection enables developers to monitor app performance metrics such as app load times, crash rates, error logs and user engagement metrics.
Analysing this data helps identify performance bottlenecks, optimise app speed and stability and ensure smooth functioning across different devices and platforms.

	Analytics and insights
	Gathering data allows developers to gain valuable insights into user demographics, usage patterns, market trends and app performance metrics.
These analytics help in making data-driven decisions, identifying growth opportunities and refining app strategies for better user acquisition and retention.

	Product development and iteration
	Data collected from user feedback, surveys and usage patterns informs product development cycles.
Developers can prioritise feature enhancements, bug fixes and new functionalities based on user feedback and data insights, leading to iterative improvements and continuous innovation.

	Targeted advertising and marketing
	Data about user preferences, behaviour, and demographics can be used for targeted advertising and marketing campaigns.
Developers can create personalised marketing messages, promotions and improve marketing effectiveness.

	Monetisation strategies
	For apps that rely on collecting money through ads, in-app purchases, subscriptions or other revenue streams, data collection plays a crucial role.
Understanding user behaviour and preferences helps in optimising monetisation strategies, pricing models and ad placements to maximise revenue generation.

	Compliance and security
	Collecting data also enables developers to ensure compliance with legal and regulatory requirements related to data privacy, security and user consent.
Developers must adhere to data protection laws and implement security measures to safeguard user data from unauthorised access or breaches

Activity 29: data ownership in app development case study
[image:]In the development of a mobile application called ’FitTrack’, which tracks users' fitness activities and provides personalised health recommendations, data ownership is a critical aspect that requires careful consideration.
Data collection
FitTrack collects various types of data, including user profiles (age, gender, weight), fitness activity logs (steps taken, calories burned), GPS data (location for mapping activities) and health goals (weight loss, muscle gain).
Data collection methods include user input during account creation, sensor data from smartphones (for example step counters) and optional integrations with wearable fitness devices.
Ownership of data
The ownership of data in FitTrack is clearly outlined in the app's privacy policy. Users retain ownership of their personal data and fitness information. FitTrack and its parent company, FitTech, have limited rights to use this data strictly for app functionality and service improvements.
FitTrack does not sell or share user data with third parties without explicit consent, except for anonymised and aggregated data used for analytics and research purposes.
Data protection measures
FitTrack employs robust data protection measures to safeguard user data. This includes encryption of data in transit and at rest, secure authentication mechanisms and regular security audits.
User data is stored securely on servers hosted by a reputable cloud service provider that complies with industry security standards and regulations.
Privacy policies and user consent
FitTrack's privacy policy is transparent and easily accessible within the app. It provides detailed information on the types of data collected, how it is used and user rights regarding data access, modification and deletion.
During the onboarding process, users are required to review and accept the privacy policy and consent to data collection and processing practices.
Compliance and legal Requirements
FitTrack complies with relevant privacy laws and regulations.
The app includes features for users to manage their privacy settings, opt-out of data sharing and request data exports or deletions as per legal requirements.
Data interpretation and use
FitTrack interprets user data to provide personalised health insights, activity recommendations and progress tracking. However, data interpretation is done in a privacy-conscious manner, avoiding profiling or discriminatory practices.
User consent is sought for specific data uses, such as sharing fitness achievements on social media or participating in health challenges with other users.
[image:]Using the case study on FitTrack, answer questions from Table 27 below.
[bookmark: _Ref179536566]Table 27 – FitTrack case study
	Question
	Possible answers

	What types of data does FitTrack collect from users?
Can you provide specific examples of the data categories?
	FitTrack collects:
user profiles (age, gender, weight)
fitness activity logs (steps taken, calories burned)
GPS data (location for mapping activities)
health goals (weight loss, muscle gain).

	How does FitTrack ensure that user data is collected and stored securely?
What encryption methods or security measures are in place?
	FitTrack employs encryption of data in transit and at rest, secure authentication mechanisms and regular security audits to safeguard user data.

	Who owns the data collected by FitTrack?
Are there any restrictions or limitations on how the data can be used?
	Users own their personal data and fitness information, with FitTrack having limited rights to use it strictly for app functionality and service improvements. Data usage is governed by user consent and privacy policies.

	Can users access, modify, or delete their data stored by FitTrack?
How is user consent obtained for data collection and processing?
	FitTrack allows users to manage their data through privacy settings, opt-out of data sharing and request data exports or deletions as per legal requirements and user preferences.

	Are there any third parties or service providers involved in data processing or storage for FitTrack?
If so, how does FitTrack ensure data confidentiality and security in these partnerships?
	FitTrack partners with reputable cloud service providers that comply with security standards and regulations, ensuring data confidentiality and security in data processing and storage partnerships.

	How does FitTrack interpret and analyse user data to improve user experience or provide personalised services?
Are there any ethical considerations in data interpretation?
	FitTrack interprets user data for personalised health insights and recommendations, prioritising ethical data interpretation and avoiding discriminatory practices.

	What measures does FitTrack have in place to detect and respond to potential cybersecurity threats, such as data breaches or malicious attacks?
	FitTrack has cybersecurity measures such as intrusion detection systems, regular security audits and incident response protocols to detect and respond to cybersecurity threats.

	Does FitTrack provide transparency about its data practices, including data sharing with third parties or data retention policies?
	FitTrack's privacy policy and terms of use provide transparency on data practices, including data sharing, retention and user rights, ensuring transparency and informed user consent.

	How does FitTrack address user concerns or inquiries related to data privacy and security?
Is there a dedicated privacy policy or support channel for users to seek assistance?
	FitTrack has a dedicated privacy policy accessible within the app and users can contact support for inquiries or assistance regarding data privacy and security concern.

[image:]Assess FitTrack's adherence to privacy and cybersecurity principles in data collection, ownership, protection and interpretation. Use the case study and the related questions to help form your answer using the PEEL paragraph writing technique.
Assess means to make a judgement of value, quality, outcomes, results or size. In this answer, you will be making a judgement of the value of FitTrack’s adherence to privacy and cybersecurity principles.
[bookmark: _Toc166829720]

[bookmark: _Toc180668937]Data protection and cybersecurity
Activity 30: cybersecurity in 7 minutes
[image:]As a class, watch .
Companies and individuals must be aware of a variety of cyber-attacks. After watching the video, identify the different cyber-attacks that could target companies and individuals.
	Sample answers:
Malware attack
Phishing attack
Man-in-the-middle attack
Password attack
Cybersecurity practices
Impact of a cyber attack
Advanced Persistent Threat (APT)
Denial of service attack and distributed denial of service (DDoS) attack
SQL injection attack

Key areas of data protection and cybersecurity
Encryption
The process of converting data into a code to prevent unauthorised access. It acts as a secure envelope around sensitive data, ensuring that even if it's intercepted, it remains confidential. In gaming, encryption is crucial for safeguarding sensitive player data, such as login credentials, payment information and personal details. This ensures that even if a cybercriminal gains access to the data, they cannot decipher it without the encryption key.
Authentication
The verification process to ensure that users are who they claim to be. This includes strong passwords and multi-factor authentication which reduces the impact of a data breach and increases a user’s defence against phishing.
Secure storage
Storing data in a way that safeguards it from unauthorised access or data breaches. Some secure data storage practices and technologies include data encryption, access control, regular backups, data retention policies and employee training.
Safeguarding user data against breaches and unauthorised access is important. This is because:
protecting user data builds trust and player confidence in the game and the game company
data breaches can result in financial losses, damage to reputation and legal consequences for game companies
unauthorised access to personal information can lead to identity theft and other privacy violations for players.
Activity 31: real-world data breaches in the software development industry
[image:]Research the following real-world data breaches in the software development industry. Provide an overview of what happened and discuss the consequences for both the user and the developer or company.
Table 28 – real-world data breaches in the software development industry
	Breach
	Overview
	Consequence

	Facebook-Cambridge Analytica data scandal (2018)
	In 2018, it was revealed that the political consulting firm Cambridge Analytica harvested data from millions of Facebook users without their consent. This data was used for targeted political advertising during elections.
	Consequences for users:
users' personal data, including profile information, likes and interactions were accessed without their knowledge or permission
this breach compromised user privacy and raised concerns about data misuse.
Consequences for the developer or company:
Facebook faced severe backlash and regulatory scrutiny for its data handling practices
Facebook’s reputation was tarnished, leading to trust issues among users and investors
Facebook implemented stricter data policies and faced fines and legal actions from regulators.

	Equifax data breach (2017)
	In 2017, Equifax, a major credit reporting agency, experienced a data breach where hackers gained access to sensitive personal information of over 147 million consumers, including social security numbers, birthdates and credit card details.
	Consequences for users:
the Equifax breach exposed users to identity theft, financial fraud and unauthorised access to their credit information
many individuals faced financial losses and struggled to regain control of their compromised data.
Consequences for the developer or company:
Equifax faced intense criticism for its lax security practices and delayed response to the breach
Equifax's stock value plummeted, and it incurred significant financial losses due to legal settlements, fines and remediation efforts.

	SolarWinds data breach (2020)
	In late 2020, SolarWinds, a software company providing network management tools, experienced a significant data breach. Hackers infiltrated SolarWinds' software update system and inserted malicious code into updates, allowing them to access the networks of numerous SolarWinds customers, including government agencies and major corporations.
	Consequences for users:
the SolarWinds breach compromised sensitive data and network infrastructure of government agencies, businesses and organisations worldwide
users' confidential information, communications and operational systems were potentially exposed, leading to security risks and vulnerabilities.
Consequences for the developer or company:
SolarWinds faced severe reputational damage and legal repercussions for the breach
SolarWinds' stock value dropped, and it underwent extensive investigations, audits and remediation efforts
SolarWinds also faced lawsuits and regulatory penalties for failing to prevent the breach and protect customer data.

	Ubiquiti Networks data breach (2021)
	In early 2021, Ubiquiti Networks, a manufacturer of networking devices and software, disclosed a data breach where unauthorised access was gained to its IT systems.
The breach exposed customer information, including account credentials, but Ubiquiti initially downplayed the severity of the incident.
	Consequences for users:
Ubiquiti customers faced potential risks of account compromise, unauthorised access to network devices and data theft
the breach undermined user trust in Ubiquiti's security measures and raised concerns about data privacy and protection.
Consequences for the developer or company:
Ubiquiti's handling of the breach, including its delayed disclosure and downplaying of the impact, led to criticism and scrutiny
Ubiquiti faced backlash from customers, regulatory scrutiny and legal challenges related to data protection compliance
Ubiquiti also implemented enhanced security measures and communication protocols in response to the incident.

[bookmark: _Toc166829721][bookmark: _Toc180668938]Representing data
In programming, variables are used to store and manipulate data, such as numbers, text, or other types of information. It represents a symbolic name or label used to store and manage data within a program or equation.
Variables have names (identifiers) that programmers assign to them, making it easier to reference and modify the data they contain. Variables can store a range of data types including Boolean, characters, strings, integers and floats.
Activity 32: What are data types?
[image:]As a class watch What are data types? (3:52).
As students watch the videos they complete the +1 routine. After the students have watched the video, they recall what the video was about. They then pass their worksheet to the next person, who elaborates on a topic, adds something new or makes a connection. Repeat this at least twice. Students then review their original responses and any new additions or elaborations made by their peers. Finally, students reflect, asking questions such as:
What did you find as your read the ideas of others?
How did it help you building on the thinking of others?
How did it help you build your understanding of this topic?
Teacher note: this activity can be conducted as a paper activity or a virtual jamboard or whiteboard. Templates are available through the Digital Learning Selector.

[bookmark: _Toc180668939]Data types
In programming, data types are essential because they define the kind of data that can be stored and manipulated within a program. The primary data types include:
integers
floats
characters
strings
Boolean operators.
Each programming language may have unique sets of data types, but the primary data types are fundamental across most programming languages to ensure data is used efficiently and correctly.
Activity 33: benefits and limitations of data types
[image:]As a class watch Why TRUE + TRUE = 2: Data Types (8:08) and discuss the benefits and limitations of data types.
[image:]Use this information to complete Table 29 below by defining and outlining benefits and limitations of each listed data type. You can also research these terms.
[bookmark: _Ref180665495]Table 29 – benefits and limitations of data types
	Data type
	Definition
	Benefits
	Limitations

	Boolean
	
	
	

	Character
	
	
	

	String
	
	
	

	Integer
	
	
	

	Float
	
	
	

Sample answer:
	Data type
	Definition
	Benefits
	Limitations

	Boolean
	A Boolean result can only have one of 2 possible values – true or false. Boolean operators are ‘AND’, ‘OR’ AND ‘NOT’.
	Simple – easy way to manage conditions and control the flow of a program.
Clear – using Booleans can make the logic of a program easy to understand and read.
Efficient – Booleans are generally fast and require minimal memory.
Reduces errors – by using Boolean values, the risk of errors in conditional statements can be reduced.
	Limited expressions – Booleans can only represent 2 states (true or false) and may not be sufficient for more complex conditions.
Binary – the simple nature of Booleans can be too simple for some programs where more detail is required.
Dependent on context – the interpretation of true or false can depend on the context leading to potential confusion if not clearly documented.

	Character
	Characters in programming represent individual letters, digits, symbols or punctuation marks and are the building blocks for strings. Each character is stored as a small piece of data usually following a standardised encoding system like ASCII or Unicode.
	Text manipulation – characters are the foundations of strings, allowing programmers to manipulate text efficiently.
Simple – handling individual characters can simplify programming tasks.
Versatile – characters can represent more than just letters and numbers, enabling diverse applications.
	Limited data – a single character only represents one symbol, which can be restrictive when dealing with more complex data.
Encoding issues – different systems and languages may use various character encodings, leading to potential compatibility issues.
Memory usage – while individual characters are small, manipulating large amounts of text at the character level can be inefficient in terms of memory.

	String
	A sequence of characters (letters, numbers or symbols) used to represent text in programming.
	Text handling – strings allow programmers to store, manipulate and display text, allowing them to create user interfaces, process data and communicate with users.
Versatile – strings can be used in various applications and are a fundamental part of many programming tasks.
Built in functions when working with strings such as finding the length of a string, concatenating (joining) strings and searching for sub-strings.
Readability – using strings can make code easier to read and understand.
	Memory usage – strings consume a significant amount or memory, especially when dealing large amounts of text.
Immutability – this means that strings cannot be changed after they are created. Any changes create a new string.
Performance – manipulating strings, especially large ones can be slower compared to other data types.
Complexity – working with strings can become complex when dealing with special characters, different encodings and localisations.

	Integer
	Integers are whole numbers without fractions or decimal parts and can be positive, negative and zero.
	Simple – integers are straightforward and easy to understand.
Efficient – operations with integers such as addition, subtraction or multiplication
Range of uses – integers are widely used in a variety of applications such as counting items, managing loops and indexing arrays.
Precision – since integers don’t have fractional parts, they avoid rounding errors that can occur with floats.
	No fractions or decimals – integers can’t represent fraction or decimal values which limits their use in scenarios using precise measurements or calculations.
Overflow – integers can have a maximum or minimum value that they can represent. If calculations go over these limits, it can lead to overflow and unexpected errors or results.
Fixed size – the range of integers is limited by the number or bits to store them. For example, a 32-bit integer has a specific range, and using larger integers requires more memory and is slower to process.

	Float
	A float or floating-point numbers are used in programming to represent numbers that have a decimal point. They can include very large and small numbers, allowing for a wide range of values.
	Precision – floats are essential for calculations that require decimal points, such as scientific or financial calculations.
Wide range – floats can represent a much larger range of values than integers, including very small fractions and very large numbers.
Flexible – floats are useful in situations where the exact value is not a whole number
Built in functions – most programming languages offer a range of built in functions to manipulate and work with floats. These functions make tasks such as rounding or truncating simpler.
	Precision issues – floats are not always perfectly accurate due to the way they are stored. This can lead to rounding errors in calculations.
Performance – calculations involving floats can be slower than those with integers due to their complexity.
Memory usage – floats generally take up more memory than integers because they store more information.
Complexity – working with floats can be more complex than working with integers especially when rounding or working precisely. This can make program debugging challenging.

[bookmark: _Toc166829722][bookmark: _Toc180668940]Producing and implementing
[bookmark: _Toc166829723][bookmark: _Toc180668941]Flowcharts
Software developers use flowcharts to show the sequence of logical steps of a program. Flowcharts use simple shapes to show the process, and arrows show the relationship and process or data flow. View Flowchart Elements to examine the various elements of a flow chart and their uses.
[image:]Activity 34: flowchart symbols and their purpose
Complete Table 30 below using the Flowchart Elements weblink.
[bookmark: _Ref180665517]Table 30 – flowchart symbols and their purpose
	Symbol
	Symbol name
	Purpose

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Teacher note: alternative resources for this activity include Guide to Flowchart Symbols, from Basic to Advanced, Flowchart Symbols and Notation and Flowchart Symbols - A Complete Guide.
[bookmark: _Toc166829724]

Sample answers:
	Symbol
	Symbol name
	Purpose

	
	Start/stop
	Use at the beginning and the end of an algorithm to show the start and finish of a program.

	
	Process
	Shows processes such as mathematical operations.

	
	Input/output
	Shows program inputs and outputs.

	
	Decision
	Highlights decision statements in a program. For example, yes or no.

	
	Arrow
	Shows the relationship between the shapes.

[bookmark: _Toc180668942]Pseudocode
Pseudocode is a way to express algorithms or program logic using structured natural language that resembles a programming language but is not bound by syntax rules. Here are some key features of pseudocode:
pseudocode follows a structured format with indentation and logical flow similar to programming languages
pseudocode is designed to be easily readable and understandable by both programmers and non-programmers
pseudocode does not adhere to the syntax rules of any specific programming language, allowing for flexibility and clarity
you can use variables and data types (such as integers, strings and arrays) in pseudocode to represent data and operations
pseudocode includes conditional statements like if-else, switch-case and loops (for, while) to control the flow of execution
you can define functions or procedures in pseudocode to encapsulate reusable code blocks
pseudocode allows for comments to explain the logic or provide additional context within the code
pseudocode may include error-handling logic using try-catch or error-checking conditions.

[image:]Activity 35: writing pseudocode
Complete Table 31 on the primary constructs of pseudocode using information provided by the teacher or from various websites.
[bookmark: _Ref180665544]Table 31 – primary constructs of pseudocode
	Primary constructs
	How to write

	Sequence
	process 1
process 2
…
…
process n

	Binary selection
	1. IF condition THEN
process 1
ENDIF
2. IF condition THEN
process 2
ELSE
process 1
ENDIF

	Multiway selection
	CASEWHERE expression evaluates to
choice a: process a
choice b: process b
…
OTHERWISE: default process
END CASE

	Nested if
	IF condition A THEN
process 1
ELSEIF condition B THEN
process 2
ELSEIF condition C THEN
process 3
ELSE
process 4
ENDIF

	Repetition
Pre-test
	WHILE condition is true
process
ENDWHILE

	Repetition
Post-test
	REPEAT
process
UNTIL condition is true

	Repetition
For/Next
	FOR variable = start TO finish STEP increment
statements
NEXT variable

Teacher note: teachers can use a variety of websites to supplement information for this activity including How to write pseudocode.
[image:]Activity 36: construct a flowchart for pseudocode
Using knowledge of flowcharts, students are required to construct flowchart representations for the above pseudocode.
Construct your flowchart in the space below:
	

Teacher note: the Stage 6 course specifications for Software Engineering demonstrate the comparison between pseudocode and flowcharts very clearly.

[bookmark: _Toc166829725][bookmark: _Toc180668943]Desk checking
[image:]As a class, walk through the below algorithms demonstrating how to conduct a desk check.
Figure 3 – algorithm 1 – simple addition – sequence
[image: # Start
Input A and B (two numbers)
A = int(input("Enter the first number (A): "))
B = int(input("Enter the first number (B): "))

Calculate the sum of A and B (C = A + B)
C = A + B

#Output C
Print ("The sum of A and B is:", C)

#Stop
]
	Sample answer:
A=3; B=5
[image: A table that shows A= 3, B =5 and C=8 Therefore the output is the sum of A and B is 8.]

Figure 4 – algorithm 2 – finding the maximum of 3 numbers – selection (branching)
[image: # Start
Input three numbers: A, B, C
A = int(input("Enter the first number (A): "))
B = int(input("Enter the first number (B): "))
C = int(input("Enter the first number (C): "))

Check for the maximum
If A >= B and A>= C:
Output A as the maximum
Print ("The maximum is A:", A)
Elif B >= A and B>= C:
Output B as the maximum
Print (The maximum is B:", B)
Else:
Output C as the maximum
Print (The maximum is C:", C)

Stop]
	Sample answer:
A=7; B=12; C=5
[image: A table that shows A= 7, B =12 and C=5 Therefore the maximum is: 12.]

Figure 5 – algorithm 3 – While loop to find the sum of N numbers – iteration (loop)
[image: # Start
Input N (a positive integer)
N = int(input("Enter a positive integer (N): "))

Initialise variables
sum_of_numbers = 0
count = 1

While loop to find the sum of the first N numbers
while count <= N:
sum_of_numbers += count
Count += 1

Output the sum
print ("The sum of the first", N, "number is:", sum_of_numbers)

Stop]
	Sample answer:
N=5; sum_of_numbers=0; count=1
[image: A table that shows the sum of the first 5 numbers is 15.]

Activity 37: create a flowchart
Create a flowchart for the following algorithms:
1. Simple addition.
1. Finding the maximum of 3 numbers (branching).
1. While loop to find the sum of N numbers – iteration (loop).
[image:]Algorithm 1 – simple addition
	[bookmark: _Hlk173939881]

[image:]Algorithm 2 – finding the maximum of 3 numbers (branching)
	

[image:]Algorithm 3 – while loop to find the sum of N numbers – iteration (loop)
	

[bookmark: _Toc180668944]Real-world problems that can be solved by an app
[image:]Activity 38: school canteen ordering
Scenario: your school does not have an online ordering system for their canteen. They still rely on cash payments and brown paper bag ordering. Parents, students and staff have expressed an interest in an app that could be used to order lunch and recess.
In pairs, you are going to complete the following tasks:
1. Evaluate some canteen ordering websites. Complete a Plus, Minus, Interesting evaluation, of at least 2 ordering websites. Examples are listed below:
1. QuickCliQ
Flexischools
Munch Monitor
Spriggy Schools.
Consider positives, negatives and any interesting features that each site has to offer. You will find this information by looking at their frequently asked questions and parents and school tabs.
Design some interview questions to ask students, parents and staff about what kind of app they would like to use for online ordering. As a class watch Designing a survey (5:20) to help formulate your questions.
Once you have designed your questions and they have been approved by your teacher, design a form in Google or Microsoft that could be sent to participants.
Teacher note: the survey does not have to be distributed – the aim is to have students think about effective questioning. If the teacher wishes to collect and analyse data, a class survey could be developed.
Now, think about how the app would work. Brainstorm what you think the app would need to be successful, by breaking it down into parts – for example the canteen menu, ordering system, parent account and student account.
Map out a plan for your app using Slide 8 – tree structure concept map similar to the example shown below.
Figure 6 – tree structure concept map
[image: A screenshot of a tree structure for 2 concepts and their relevant subconcepts, showing how both concepts intersect at subconcept 2.]
[bookmark: _Toc166829726]Teacher note: this activity complements the Oracle Digital Literacy program. In this course students will learn the foundations of Oracle APEX, a low-code development platform that can be used to deliver learning on how to develop an app and guide students to build a café ordering system.
Low-code is a visual app development technology that uses pre-built modules and drag-and-drop editors to make app development easy.
The course is 20 hours and designed to be delivered across 28 periods and could be used in blending the delivery of Developing apps and web software with Designing for user experience.

[bookmark: _Toc180668945]Error type in programming
Syntax errors are detected by the compiler or interpreter during code compilation and prevent the program from running.
Logic errors result from flawed program logic and lead to incorrect behaviour but don't cause program crashes.
Runtime errors occur during program execution and can crash the program or produce error messages that need to be handled.
[image:]Activity 39: research task – error type in programming
Complete Table 32 below with definitions, examples and the impact that error has on running code.
[bookmark: _Ref180665584]Table 32 – errors in running code and their impacts
	Errors
	Description
	Example
	Impact

	Syntax
	Syntax errors, also known as compilation errors, occur when the code violates the rules of the programming language's syntax.
These errors prevent the program from being compiled or interpreted.
	Missing semicolons or parentheses.
Using undeclared variables.
Incorrect capitalisation of function or variable names.
	Syntax errors are detected by the compiler or interpreter during the compilation or parsing phase.
They prevent the program from being executed until fixed. Programs with syntax errors won't run at all.

	Logic
	Logic errors occur when the program's logic is flawed, resulting in unintended or incorrect behaviour.
These errors do not cause the program to crash but lead to unexpected results.
	A mathematical calculation that produces the wrong result.
A conditional statement that doesn't correctly evaluate a condition.
A loop that doesn't terminate when it should.
	Logic errors can be challenging to detect because the program still runs.
However, they can lead to incorrect output or behaviour and debugging is required to identify and fix them.

	Runtime
	Runtime errors, also known as exceptions or run-time exceptions, occur when the program is running and encounters a condition that it cannot handle.
These errors can lead to the program crashing or behaving unpredictably.
	Division by zero.
Attempting to access an array element that doesn't exist.
Trying to open a file that doesn't exist.
	Runtime errors can cause the program to terminate abruptly or produce error messages.
They need to be handled through exception handling mechanisms to prevent program crashes.

[image:]Activity 40: find and correct the errors
Using the algorithms in Table 33 below, spot the error and provide a correction for the algorithm, including how the code will be changed.
[bookmark: _Ref179536881]Table 33 – coding errors in sample algorithms
	Sample algorithm
	Spot the error

	[image: # Algorithm: Syntax Error Example

Start
Input two numbers
num1 = int(input("Enter the first number: "))
num2 = int(input("Enter the second number: "))

Calculate their sum
sum = num1 + num2

Output the result
print("The sum of", num1, "and", num2, "is:", sum)]
	The word sum is an in-built function, and therefore is a syntax error.
To fix this, a new variable name needs to be provided for the ’sum‘ – for example this could be changed to result.

	[image: # Algorithm: Logic Error Example

Start
Input two numbers
num1 = int(input("Enter the first number: "))
num2 = int(input("Enter the second number: "))

Check if both numbers are positive
if num 1 > 0 and num@> 0:
Print ("Both numbers are positive.")
else:
 Print ("At lease one number is not positive.")
Stop]
	The if statement checks if the number is greater than 0 but doesn’t check if the number is 0 which is also a positive number.
To fix this, you need to add = to both conditions to ensure 0 is checked too.

	[image: # Algorithm: Runtime Error Example

Start
Input two numbers
num1 = int(input("Enter the first number: "))
num2 = int(input("Enter the second number: "))

Attempt to divide num1 by num2
result = num1 / num2

Output the result
print ("The result of the division is:", result)
Stop]
	If num2 is entered as zero then this algorithm will result in a ZeroDivisionError, therefore a conditional statement if num2 is not equal to zero.

Teacher note: depending on the software that is being used to create app solutions, students will need to be taught how to debug software using appropriate debugging techniques for example breakpoints, watch statements or single-line stepping.

[bookmark: _Toc166829727][bookmark: _Toc180668946]Producing and implementing
Most sections within this part of the syllabus should be completed through a practical project.
Produce and implement an app using the preferred design in a general-purpose or object-oriented programming language.
Develop the user interface (UI) and user experience (UX) of an app, including using event-driven programming to respond to user input.
Develop a web page or app that separates content and presentation using html and cascading style sheet (CSS)
Document the design and implementation of the solution in a project notebook.
Interpret and modify existing programs (code) for apps.
Design and implement modular programs (code) with functions for apps.
Apply selected algorithms and data structures for apps.
Validate programs using test cases and debug a range of errors.
Interpret and extend or implement an object-oriented program (code)
Select and use specialist terminology in context.
Create a record of project development demonstrating iterative design and evaluation.
[bookmark: _Toc166829728]

[bookmark: _Toc180668947]Record of project development
Plan and manage a project using an iterative approach. Keep a record of project development and video record your system model attempting processes as it evolves.
Use the following pages as a diary to document the development of your project. Make note of your skills and knowledge gained, challenges faced and your successes demonstrating iterative design and evaluation.
Table 34 – project development diary
	Date
	Description

	__/__/__
	

	__/__/__
	

	__/__/__
	

	__/__/__
	

	__/__/__
	

	__/__/__
	

[bookmark: _Toc166829729]

[bookmark: _Toc180668948]Practical development
Option: Anvil – anvil.works
Login to anvil.works.
Teacher note: email the company and receive an educational licence. Students click on the provided link to gain a seat on your development team. This allows students full professional capabilities and the ability to add other developers on the licence as collaborators.
Anvil is a web-based programming option that focuses on Python with integrated HTML/CSS. There are over 30 tutorials on how to utilise the software to its full capabilities that range from beginner to advanced.
The following tutorials allow students to understand the functionality:
Simple feedback form
Multi-user application
Data grids: displaying data in tables
Database-backed apps
To-do list app

Option: App Lab – Code.org
Login to Code.org.
The Code Org App lab contains 11 self-paced lessons. Students can complete all activities to gain skills and knowledge to build their own apps. At any point students may start to develop their own projects. The screen captures below show the lessons and the progress of a learner. As each of the lessons are completed, they are marked in green. Teachers can check student progress and suggest changes or updates for students to consider. Programming can be completed using Javascript, however block coding is available to be used also as a check for errors. Your teacher will indicate where it is appropriate to use text-based programming. The module is self-paced. Do not rush to complete the activities.
Figure 7 – App Lab screenshots
[image: A screenshot of event driven programming in App Lab and 3 screenshots showing progress through tutorials.]

[bookmark: _Toc166829730][bookmark: _Toc180668949]Testing and evaluating
These sections of the syllabus should be completed through a practical project.
Evaluate their own project and that of their peers using predetermined functional and non-functional requirements.
Validate algorithms and programs through tracing and test cases.
Test and evaluate the functionality and performance of a simulation or game for specified requirements.
Students should conduct continuous evaluations throughout the Assessment task and peer-evaluation to gather feedback for improving the final solution.
Evidence of testing through screenshots and explanations of how they have fixed the errors should be displayed.
Teacher note: useful resources for evaluation include the Teacher workbook from Grok Academy DT Applied. This resource walks through the whole design process from brainstorming to evaluation and pitching.

[bookmark: _Toc166829731][bookmark: _Toc180668950]Explore careers in software development
Choose a career in software development from the following list:
Software Engineer
Web Developer
Mobile App Developer
Data Scientist
DevOps Engineer
UX/UI Designer
Quality Assurance Tester
Database Administrator
IT Project Manager
Full Stack Developer.
[image:]Activity 41: explore careers in software development
Research one of the careers listed above using the criteria below:
identify the education, skills and experience you may need for the chosen career. Including certifications and tertiary education (degrees) relevant to the chosen career
research the availability of jobs in the chosen career using websites such as SEEK, Indeed and CareerOne. Include information such as wage range, working conditions and hours in your research
investigate technical skills, programming languages and other additional information relating to the career
Outline the roles and responsibilities a person may be required to perform when working in this role
investigate various opportunities for professional development, such as online courses, coding bootcamps, conferences and industry certifications. Research and identify specific learning resources and opportunities that can enhance their skills and knowledge in their chosen career path.
Create an infographic to display your findings. Infographics can be created using Canva.
Teacher note: the activity could be completed by individual students or in groups with a presentation component.
Activity 42: existing positions in software development
[image:]Research 3 different existing positions in software development and their criteria from current employment websites such as SEEK, Indeed and CareerOne.
Table 35 – position 1
	Criteria
	Response

	Job title
	

	Training required
	

	Personal requirements
	

	Outline of duties
	

	Average income
	

	Working hours
	

Table 36 – position 2
	Criteria
	Response

	Job title
	

	Training required
	

	Personal requirements
	

	Outline of duties
	

	Average income
	

	Working hours
	

Table 37 – position 3
	Criteria
	Response

	Job title
	

	Training required
	

	Personal requirements
	

	Outline of duties
	

	Average income
	

	Working hours
	

[bookmark: _Toc93660425][bookmark: _Toc106634832][bookmark: _Toc112928231][bookmark: _Toc180668951]References
This resource contains NSW Curriculum and syllabus content. The NSW Curriculum is developed by the NSW Education Standards Authority. This content is prepared by NESA for and on behalf of the Crown in right of the State of New South Wales. The material is protected by Crown copyright.
Please refer to the NESA Copyright Disclaimer for more information https://educationstandards.nsw.edu.au/wps/portal/nesa/mini-footer/copyright.
NESA holds the only official and up-to-date versions of the NSW Curriculum and syllabus documents. Please visit the NSW Education Standards Authority (NESA) website https://educationstandards.nsw.edu.au and the NSW Curriculum website https://curriculum.nsw.edu.au.
Computing Technology 7–10 Syllabus © NSW Education Standards Authority (NESA) for and on behalf of the Crown in the State of New South Wales, 2022.
[bookmark: _Hlk179530544]accessiBe Team (10 December 2023) ‘Slide into Inclusion with Accessible Presentation Decks’, accessiBe blog, accessed 17 September 2024.
AltexSoft (30 November 2023) ‘Functional and Nonfunctional Requirements: Specification and Types’, AltexSoft blog, accessed 17 September 2024.
AltexSoft (16 June 2022) 'What are Non-functional Requirements and How Do They Work?’ [video], AltexSoft, YouTube, accessed 17 September 2024.
[bookmark: _Hlk179530702]Anvil (2024a) Anvil Works [website], accessed 17 September 2024.
—— (2024b) ‘Build a Simple Feedback Form’, Tutorials, Anvil website, accessed 17 September 2024.
—— (2024c) ‘Build Database-Backed Apps’, Tutorials, Anvil website, accessed 17 September 2024.
—— (2024d) ‘Data Grids: Displaying Data in Tables’, Tutorials, Anvil website, accessed 17 September 2024.
—— (2024e) ‘Multi-User Applications with Anvil’, Tutorials, Anvil website, accessed 17 September 2024.
[bookmark: _Hlk179530718]Arkenea, Inc (17 March 2016) ‘The Evolution of Mobile Apps – 1994 through 2016’, Arkenea blog, accessed 17 September 2024.
[bookmark: _Hlk179530732]Attorney-General’s Department (n.d.) ‘Copyright basics: What does copyright protect?’, Copyright, Attorney-General's Department website, accessed 17 September 2024.
Canva (n.d.) Canva [website], accessed 17 September 2024.
[bookmark: _Hlk179530866]CareerOne Pty Ltd (2024) CareerOne [website], accessed 17 September 2024.
CareerFoundry (30 October 2018) How To Create Your First Wireframe (Video Guide) CareerFoundry YouTube, accessed 17 September 2024.
Code.org (2024) Code.org, accessed 17 September 2024.
DLTV (Digital Learning and Teaching Victoria) (2022) Object-Oriented Programming: getting started for Australian teachers, DLTV website, accessed 17 September 2024.
[bookmark: _Hlk179530883]Eye on Tech (16 September 2020) 'What is a Web App? Web App vs. Native App' [video], Eye on Tech, YouTube, accessed 17 September 2024.
[bookmark: _Hlk179530912]Figma (n.d.) ‘What is wireframing?’, Design basics, Figma website, accessed 17 September 2024.
Flexischools (n.d.) Flexischools: Online canteen ordering system for schools, Flexischools website, accessed 17 September 2024.
Grok Academy Limited (n.d.) Grok Academy [website], accessed 17 September 2024.
Indeed (2024) Indeed Australia [website], accessed 17 September 2024.
Inventionland (2024) ‘The History of Mobile Apps’, Inventionland blog, accessed 17 September 2024.
[bookmark: _Hlk179530797]IP (Intellectual Property) Australia (n.d.) Understanding intellectual property (IP), IP Australia website, accessed 17 September 2024.
[bookmark: _Hlk179530960]Jabrils (9 July 2019) ’What are Data Types?’ [video], Jabrils, YouTube, accessed 17 September 2024.
LearnFree (4 October 2018) ’Computer Science Basics: Sequences, Selections, and Loops’ [video], LearnFree, YouTube, accessed 17 September 2024.
[bookmark: _Hlk179531023]LinkedIn (2024) ‘Reverse Engineering Mobile Apps: Analysis and Documentation’, Learn more about Collaborative Articles, LinkedIn website, accessed 17 September 2024.
Lucid Software Inc (2024) Flowchart Symbols and Notation, Lucidchart website, accessed 17 September 2024.
Motiso D (2024) ‘How to write pseudocode (Definition, Components and Pros)’, Career development, Indeed website, accessed 17 September 2024.
[bookmark: _Hlk179531045]Mr Matthews (5 March 2018) ‘CS Basics: Input Process Output’ [video], Mr Matthews, YouTube, accessed 17 September 2024.
[bookmark: _Hlk179531061]MunchMonitor (2021) MunchMonitor [website], accessed 17 September 2024.
Oracle (n.d.) Oracle Digital Literacy, Oracle University website, accessed 17 September 2024.
[bookmark: _Hlk179531108]Perforce Software Inc (15 November 2019) ‘Guide to Flowchart Symbols, from Basic to Advanced’, Gliffy by Perforce blog, accessed 17 September 2024.
QuickCliq (2024) QuickCliq [website], accessed 17 September 2024.
[bookmark: _Hlk179531576]Refsnes Data (1999–2024) Python Tutorial, W3Schools website, accessed 17 September 2024.
[bookmark: _Hlk179531142]Scott T (4 February 2020) ‘Why TRUE + TRUE = 2: Data Types’ [video], Tom Scott, YouTube, accessed 17 September 2024.
[bookmark: _Hlk179531153]SEEK (n.d.) SEEK Australia [website], accessed 17 September 2024.
[bookmark: _Hlk179531160]Simplilearn (11 June 2020) 'What Is Cyber Security | How It Works? | Cyber Security In 7 Minutes | Cyber Security | Simplilearn' [video], Simplilearn, YouTube, accessed 17 September 2024.
[bookmark: _Hlk179531167]Spriggy Schools (2023) Spriggy Schools [website], accessed 17 September 2024.
[bookmark: _Hlk179531658][bookmark: _Hlk179530197]SVB Enterprises Pty Ltd trading as PitchVest (6 February 2020) ‘What is a Pitch Deck?’, PitchVest blog, accessed 17 September 2024.
Taylor S (2024) ‘To-do List App’, Workshops, Anvil website, accessed 17 September 2024.
[bookmark: _Hlk179531177]TED (22 September 2023) ‘The Secret to Successfully Pitching an Idea | The Way We Work, a TED series’ [video], TED, YouTube, accessed 17 September 2024.
Tutorials Point (2024) ‘Flowchart Elements’, Programming Methodologies Tutorial, Tutorials Point website, accessed 17 September 2024.
[bookmark: _Hlk179531186]Veselski A (2 June 2022) ‘20+ mobile app wireframe examples to inspire you’, The DECODE blog, accessed 17 September 2024.
[bookmark: _Hlk179531192]Zen Flowchart (n.d.) Flowchart Symbols – A Complete Guide, Zen Flowchart website, accessed 17 September 2024.

© State of New South Wales (Department of Education), 2024
The copyright material published in this resource is subject to the Copyright Act 1968 (Cth) and is owned by the NSW Department of Education or, where indicated, by a party other than the NSW Department of Education (third-party material).
Copyright material available in this resource and owned by the NSW Department of Education is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
[image: Creative Commons Attribution license logo.]
This license allows you to share and adapt the material for any purpose, even commercially.
Attribution should be given to © State of New South Wales (Department of Education), 2024.
Material in this resource not available under a Creative Commons license:
· the NSW Department of Education logo, other logos and trademark-protected material
· material owned by a third party that has been reproduced with permission. You will need to obtain permission from the third party to reuse its material.
Links to third-party material and websites
Please note that the provided (reading/viewing material/list/links/texts) are a suggestion only and implies no endorsement, by the New South Wales Department of Education, of any author, publisher, or book title. School principals and teachers are best placed to assess the suitability of resources that would complement the curriculum and reflect the needs and interests of their students.
If you use the links provided in this document to access a third-party's website, you acknowledge that the terms of use, including licence terms set out on the third-party's website apply to the use which may be made of the materials on that third-party website or where permitted by the Copyright Act 1968 (Cth). The department accepts no responsibility for content on third-party websites.

image27.png
Event-Driven Programming in App Lab

This seif-paced module introduces foundational concepts of computer programming, which unlocks the ability to make reh,intoractive apps. Thisunit uses Javascript as
the programming language, and App Lab as the programming environmen o buld apps, but the concepts learned In these lessons span al programming languages and
tools.

For s cun et H=

Select a section M @ Show All Lessons @ ido AllLossons | @

image5.png

image1.png

image6.png
1. Identifying
and defining

eidentify and define the needs, opportunities and wants of a
computing challenge

e practise the technical skills

edevelop evaluation criteria

2. Researching
nd planning

eresearch, generate and practise ideas
ebe creative and propose new approaches to problems

eexplore new design opportunities

3. Producing and
implementing

Ongoing Evaluation

ebuild and implement ideas

eapply a variety of skills and techniques to create products that
meet set criteria

emodify and iterate solutions

Review if required to improve

4. Testing and
evaluating

etest and evaluate solutions/products

eevaluate quality and effectiveness against the criteria

emake judgements throughout the solution and use these to
refine the product

image7.png
£
oy

image8.png
&
)

image9.png

image10.png
<Y

image11.png
Storage

. Processes .

image12.png
)
)

image13.png

image14.png
def celsius_to_fahrenheit(celsius):
return (celsius * 9/5) + 32

def fahrenheit_to_celsius(fahrenheit):
return (fahrenheit - 32) * 5/9

print("Temperature Converter")
print("1. Celsius to Fahrenheit")
print("2. Fahrenheit to Celsius")

choice = input("Enter your choice (1 or 2): ")

1t
celsius = float(input("Enter temperature in Celsius: "))
converted_temp = celsius_to_fahrenheit(celsius)
print (f"{celsius}°C is equal to {converted_temp}°F")
elif choice == '2':
fahrenheit = float(input("Enter temperature in Fahrenheit: "))
converted_temp = fahrenheit_to_celsius(fahrenheit)
print (£"{fahrenheit}°F is equal to {converted temp}°C")
else:
print("Invalid choice. Please enter 1 or 2.")

if choice

image15.png
import random
Generate a random number between 1 and 100
secret_number = random.randint(1, 100)
attempts = 0

print("Welcome to the Guess the Number Game!™)
print("I'm thinking of a number between 1 and 100.")

while True:
Get user input and validate
while True:
try:
guess = int(input("\nEnter your guess (1-100): "))
if 1 <= guess <= 100:
break
else:
print("Please enter a number between 1 and 100.")

except ValueError:
print("Please enter a valid number.")

attempts += 1

Check if the guess is correct
if guess == secret_number:
print(f"Congratulations! You guessed the number {secret_number} in {attempts} attempts.”)
break
elif guess < secret_number:
print("Too low! Try guessing a higher number.")

else:
print("Too high! Try guessing a lower number.")

image16.png
UnersitatsdeVest:

an Tiisoars

@O

Low Fidelity Wireframe. High Fdelity Wirerame Mockup Prototype

image17.png
Start

Input A and B (two numbers)

A = int(input("Enter the first number (A): "))
B = int(input("Enter the second number (B): "))

Calculate the sum of A and B (C = A + B)
C=A+B

Output C
print("The sum of A and B is:", C)

Stop

image18.png
OUTPUT

The Sum of Aand B is 8

image19.png
Start
Input three numbezs: A, B, C

A = int(input("Enter the first number (A): "))
B = int(input("Enter the second number (B): "))
C = int(input("Enter the third number (C): "))

Check for the maximum
if A >= B and A >= C:

Output A as the maximum

print("The maximum is A:", A)
clif B >= A and B >= C:

Output B as the maximum

print("The maximum is B:", B)
else:

Output C as the maximum

print("The maximum is C:", C)

Stop

image20.png
OUTPUT

12

The maximum is: 12

image21.png
Start
Input N (a positive integer)
N = int(input("Enter a positive integer (N): "))

Initialize variables
o

sum_of_numbers

count = 1

While loop to find the sum of the first N numbers
while count <= N:
sum_of_numbers += count

count += 1

Output the sum
print("The sum of the first’, N, "numbers is:", sum_of_numbexs)

Stop

image22.png
sum_of_numbers count | OUTPUT

0 1

1 2

3 3

6 4

10 5

15 6 The sum of the first 5 numbers is: 15

image23.png
Tree structure

Concept 1

Concept 2

Subconcept 1

1< 1

Details Details Details

Subconcept 2 Subconcept 3

image24.png
Algorithm: Syntax Error Example

Start
Tnput two numbers
numl = int(input("Enter the first number: "))

num2 = int(input("Enter the second number: "))

Calculate their sum
sum = numi + num2

Ouput the result

print("The sum of", numl, "and’, num2, "is:", sum)

image25.png
Algorithm: Logic Error Example

Start
Tnput two numbers

numl = int(input("Enter the first number: "))
num2

int(input("Enter the second number: "))

Check if both numbers are positive
if numi > 0 and num2 > O:

print("Both numbers are positive.")
else:

print("At least one number is not positive.")
Stop

image26.png
Algorithm: Runtime Error Example

Start
Tnput two numbers

numl = int(input("Enter the first number: "))
num2 = int(input("Enter the second number: "))

Attempt to divide numl by num2
result = numi / num2

Output the result
print("The result of the division is:", result)
Stop

image2.png

image3.png
NSW

GOVERNMENT

image4.svg

